These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


397 related items for PubMed ID: 16219320

  • 1. Crystal structures of an intein from the split dnaE gene of Synechocystis sp. PCC6803 reveal the catalytic model without the penultimate histidine and the mechanism of zinc ion inhibition of protein splicing.
    Sun P, Ye S, Ferrandon S, Evans TC, Xu MQ, Rao Z.
    J Mol Biol; 2005 Nov 11; 353(5):1093-105. PubMed ID: 16219320
    [Abstract] [Full Text] [Related]

  • 2. Conserved residues that modulate protein trans-splicing of Npu DnaE split intein.
    Wu Q, Gao Z, Wei Y, Ma G, Zheng Y, Dong Y, Liu Y.
    Biochem J; 2014 Jul 15; 461(2):247-55. PubMed ID: 24758175
    [Abstract] [Full Text] [Related]

  • 3. Mutational analysis of protein splicing, cleavage, and self-association reactions mediated by the naturally split Ssp DnaE intein.
    Nichols NM, Evans TC.
    Biochemistry; 2004 Aug 10; 43(31):10265-76. PubMed ID: 15287754
    [Abstract] [Full Text] [Related]

  • 4. Zinc ion effects on individual Ssp DnaE intein splicing steps: regulating pathway progression.
    Nichols NM, Benner JS, Martin DD, Evans TC.
    Biochemistry; 2003 May 13; 42(18):5301-11. PubMed ID: 12731871
    [Abstract] [Full Text] [Related]

  • 5. Highly efficient protein trans-splicing by a naturally split DnaE intein from Nostoc punctiforme.
    Iwai H, Züger S, Jin J, Tam PH.
    FEBS Lett; 2006 Mar 20; 580(7):1853-8. PubMed ID: 16516207
    [Abstract] [Full Text] [Related]

  • 6. Engineering artificially split inteins for applications in protein chemistry: biochemical characterization of the split Ssp DnaB intein and comparison to the split Sce VMA intein.
    Brenzel S, Kurpiers T, Mootz HD.
    Biochemistry; 2006 Feb 14; 45(6):1571-8. PubMed ID: 16460004
    [Abstract] [Full Text] [Related]

  • 7. Functional characterization of a naturally occurring trans-splicing intein from Synechococcus elongatus in a mammalian cell system.
    Chen L, Zhang Y, Li G, Huang H, Zhou N.
    Anal Biochem; 2010 Dec 15; 407(2):180-7. PubMed ID: 20727340
    [Abstract] [Full Text] [Related]

  • 8. Crystal structure of a mini-intein reveals a conserved catalytic module involved in side chain cyclization of asparagine during protein splicing.
    Ding Y, Xu MQ, Ghosh I, Chen X, Ferrandon S, Lesage G, Rao Z.
    J Biol Chem; 2003 Oct 03; 278(40):39133-42. PubMed ID: 12878593
    [Abstract] [Full Text] [Related]

  • 9. Solution structure of DnaE intein from Nostoc punctiforme: structural basis for the design of a new split intein suitable for site-specific chemical modification.
    Oeemig JS, Aranko AS, Djupsjöbacka J, Heinämäki K, Iwaï H.
    FEBS Lett; 2009 May 06; 583(9):1451-6. PubMed ID: 19344715
    [Abstract] [Full Text] [Related]

  • 10. Protein trans-splicing and cyclization by a naturally split intein from the dnaE gene of Synechocystis species PCC6803.
    Evans TC, Martin D, Kolly R, Panne D, Sun L, Ghosh I, Chen L, Benner J, Liu XQ, Xu MQ.
    J Biol Chem; 2000 Mar 31; 275(13):9091-4. PubMed ID: 10734038
    [Abstract] [Full Text] [Related]

  • 11. Modeling protein splicing: reaction pathway for C-terminal splice and intein scission.
    Mujika JI, Lopez X, Mulholland AJ.
    J Phys Chem B; 2009 Apr 23; 113(16):5607-16. PubMed ID: 19326906
    [Abstract] [Full Text] [Related]

  • 12. Functional analysis of the split Synechocystis DnaE intein in plant tissues by biolistic particle bombardment.
    Yang J, Henry-Smith TV, Qi M.
    Transgenic Res; 2006 Oct 23; 15(5):583-93. PubMed ID: 16830226
    [Abstract] [Full Text] [Related]

  • 13. Intein lacking conserved C-terminal motif G retains controllable N-cleavage activity.
    Volkmann G, Liu XQ.
    FEBS J; 2011 Sep 23; 278(18):3431-46. PubMed ID: 21787376
    [Abstract] [Full Text] [Related]

  • 14. Development of a tandem protein trans-splicing system based on native and engineered split inteins.
    Shi J, Muir TW.
    J Am Chem Soc; 2005 May 04; 127(17):6198-206. PubMed ID: 15853324
    [Abstract] [Full Text] [Related]

  • 15. Expression of split dnaE genes and trans-splicing of DnaE intein in the developmental cyanobacterium Anabaena sp. PCC 7120.
    Wei XY, Sakr S, Li JH, Wang L, Chen WL, Zhang CC.
    Res Microbiol; 2006 Apr 04; 157(3):227-34. PubMed ID: 16256311
    [Abstract] [Full Text] [Related]

  • 16. In vivo and in vitro protein ligation by naturally occurring and engineered split DnaE inteins.
    Aranko AS, Züger S, Buchinger E, Iwaï H.
    PLoS One; 2009 Apr 04; 4(4):e5185. PubMed ID: 19365564
    [Abstract] [Full Text] [Related]

  • 17. The Thermococcus kodakaraensis Tko CDC21-1 intein activates its N-terminal splice junction in the absence of a conserved histidine by a compensatory mechanism.
    Tori K, Cheriyan M, Pedamallu CS, Contreras MA, Perler FB.
    Biochemistry; 2012 Mar 27; 51(12):2496-505. PubMed ID: 22380677
    [Abstract] [Full Text] [Related]

  • 18. Protein splicing in cis and in trans.
    Saleh L, Perler FB.
    Chem Rec; 2006 Mar 27; 6(4):183-93. PubMed ID: 16900466
    [Abstract] [Full Text] [Related]

  • 19. The naturally split Npu DnaE intein exhibits an extraordinarily high rate in the protein trans-splicing reaction.
    Zettler J, Schütz V, Mootz HD.
    FEBS Lett; 2009 Mar 04; 583(5):909-14. PubMed ID: 19302791
    [Abstract] [Full Text] [Related]

  • 20. Probing intein-catalyzed thioester formation by unnatural amino acid substitutions in the active site.
    Schwarzer D, Ludwig C, Thiel IV, Mootz HD.
    Biochemistry; 2012 Jan 10; 51(1):233-42. PubMed ID: 22182201
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.