These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


412 related items for PubMed ID: 16220918

  • 1. Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets.
    Zheng B, Roach LS, Ismagilov RF.
    J Am Chem Soc; 2003 Sep 17; 125(37):11170-1. PubMed ID: 16220918
    [Abstract] [Full Text] [Related]

  • 2. Nanoliter dispensing method by degassed poly(dimethylsiloxane) microchannels and its application in protein crystallization.
    Zhou X, Lau L, Lam WW, Au SW, Zheng B.
    Anal Chem; 2007 Jul 01; 79(13):4924-30. PubMed ID: 17547370
    [Abstract] [Full Text] [Related]

  • 3. Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system.
    Shestopalov I, Tice JD, Ismagilov RF.
    Lab Chip; 2004 Aug 01; 4(4):316-21. PubMed ID: 15269797
    [Abstract] [Full Text] [Related]

  • 4. Microscale vapour diffusion for protein crystallization.
    Korczyńska J, Hu TC, Smith DK, Jenkins J, Lewis R, Edwards T, Brzozowski AM.
    Acta Crystallogr D Biol Crystallogr; 2007 Sep 01; 63(Pt 9):1009-15. PubMed ID: 17704570
    [Abstract] [Full Text] [Related]

  • 5. Crystallizing proteins on the basis of their precipitation diagram determined using a microfluidic formulator.
    Sommer MO, Larsen S.
    J Synchrotron Radiat; 2005 Nov 01; 12(Pt 6):779-85. PubMed ID: 16239748
    [Abstract] [Full Text] [Related]

  • 6. Capillary kinetics of water in homogeneous, hydrophilic polymeric micro- to nanochannels.
    Jeong HE, Kim P, Kwak MK, Seo CH, Suh KY.
    Small; 2007 May 01; 3(5):778-82. PubMed ID: 17352432
    [No Abstract] [Full Text] [Related]

  • 7. Wet-stamped precipitant gradients control the growth of protein microcrystals in an array of nanoliter wells.
    Mahmud G, Bishop KJ, Chegel Y, Smoukov SK, Grzybowski BA.
    J Am Chem Soc; 2008 Feb 20; 130(7):2146-7. PubMed ID: 18225903
    [No Abstract] [Full Text] [Related]

  • 8. Controlling one protein crystal growth by droplet-based microfluidic system.
    Yamaguchi H, Maeki M, Yamashita K, Nakamura H, Miyazaki M, Maeda H.
    J Biochem; 2013 Apr 20; 153(4):339-46. PubMed ID: 23316082
    [Abstract] [Full Text] [Related]

  • 9. A microfluidic chip for formation and collection of emulsion droplets utilizing active pneumatic micro-choppers and micro-switches.
    Lai CW, Lin YH, Lee GB.
    Biomed Microdevices; 2008 Oct 20; 10(5):749-56. PubMed ID: 18484177
    [Abstract] [Full Text] [Related]

  • 10. Using nanoliter plugs in microfluidics to facilitate and understand protein crystallization.
    Zheng B, Gerdts CJ, Ismagilov RF.
    Curr Opin Struct Biol; 2005 Oct 20; 15(5):548-55. PubMed ID: 16154351
    [Abstract] [Full Text] [Related]

  • 11. A microfluidic device for kinetic optimization of protein crystallization and in situ structure determination.
    Hansen CL, Classen S, Berger JM, Quake SR.
    J Am Chem Soc; 2006 Mar 15; 128(10):3142-3. PubMed ID: 16522084
    [Abstract] [Full Text] [Related]

  • 12. DEP actuated nanoliter droplet dispensing using feedback control.
    Wang KL, Jones TB, Raisanen A.
    Lab Chip; 2009 Apr 07; 9(7):901-9. PubMed ID: 19294300
    [Abstract] [Full Text] [Related]

  • 13. Electrowetting-based droplet mixers for microfluidic systems.
    Paik P, Pamula VK, Pollack MG, Fair RB.
    Lab Chip; 2003 Feb 07; 3(1):28-33. PubMed ID: 15100802
    [Abstract] [Full Text] [Related]

  • 14. Controlled assembly of jammed colloidal shells on fluid droplets.
    Subramaniam AB, Abkarian M, Stone HA.
    Nat Mater; 2005 Jul 07; 4(7):553-6. PubMed ID: 15937488
    [Abstract] [Full Text] [Related]

  • 15. Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays.
    Zheng B, Tice JD, Ismagilov RF.
    Anal Chem; 2004 Sep 01; 76(17):4977-82. PubMed ID: 15373431
    [Abstract] [Full Text] [Related]

  • 16. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.
    Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM.
    Lab Chip; 2006 Mar 01; 6(3):437-46. PubMed ID: 16511628
    [Abstract] [Full Text] [Related]

  • 17. Microfluidic droplet trapping array as nanoliter reactors for gas-liquid chemical reaction.
    Zhang Q, Zeng S, Qin J, Lin B.
    Electrophoresis; 2009 Sep 01; 30(18):3181-8. PubMed ID: 19705356
    [Abstract] [Full Text] [Related]

  • 18. Droplet-based microfluidic flow injection system with large-scale concentration gradient by a single nanoliter-scale injection for enzyme inhibition assay.
    Cai LF, Zhu Y, Du GS, Fang Q.
    Anal Chem; 2012 Jan 03; 84(1):446-52. PubMed ID: 22128774
    [Abstract] [Full Text] [Related]

  • 19. Optimization of buffer solutions for protein crystallization.
    Gosavi RA, Mueser TC, Schall CA.
    Acta Crystallogr D Biol Crystallogr; 2008 May 03; 64(Pt 5):506-14. PubMed ID: 18453686
    [Abstract] [Full Text] [Related]

  • 20. In situ formation, manipulation, and imaging of droplet-encapsulated fibrin networks.
    Evans HM, Surenjav E, Priest C, Herminghaus S, Seemann R, Pfohl T.
    Lab Chip; 2009 Jul 07; 9(13):1933-41. PubMed ID: 19532969
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.