These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


141 related items for PubMed ID: 16220961

  • 1. Temperature dependence of domain motions of calmodulin probed by NMR relaxation at multiple fields.
    Chang SL, Szabo A, Tjandra N.
    J Am Chem Soc; 2003 Sep 17; 125(37):11379-84. PubMed ID: 16220961
    [Abstract] [Full Text] [Related]

  • 2. Quantitative analysis of conformational exchange contributions to 1H-15N multiple-quantum relaxation using field-dependent measurements. Time scale and structural characterization of exchange in a calmodulin C-terminal domain mutant.
    Lundström P, Akke M.
    J Am Chem Soc; 2004 Jan 28; 126(3):928-35. PubMed ID: 14733570
    [Abstract] [Full Text] [Related]

  • 3. Backbone dynamics and energetics of a calmodulin domain mutant exchanging between closed and open conformations.
    Evenäs J, Forsén S, Malmendal A, Akke M.
    J Mol Biol; 1999 Jun 11; 289(3):603-17. PubMed ID: 10356332
    [Abstract] [Full Text] [Related]

  • 4. Contributions to protein entropy and heat capacity from bond vector motions measured by NMR spin relaxation.
    Yang D, Mok YK, Forman-Kay JD, Farrow NA, Kay LE.
    J Mol Biol; 1997 Oct 10; 272(5):790-804. PubMed ID: 9368658
    [Abstract] [Full Text] [Related]

  • 5. Slow backbone dynamics of chicken villin headpiece subdomain probed by NMR C'-N cross-correlated relaxation.
    Vugmeyster L.
    Magn Reson Chem; 2009 Sep 10; 47(9):746-51. PubMed ID: 19479944
    [Abstract] [Full Text] [Related]

  • 6. Backbone dynamic properties of the central linker region of calcium-calmodulin in 35% trifluoroethanol.
    Brokx RD, Scheek RM, Weljie AM, Vogel HJ.
    J Struct Biol; 2004 Jun 10; 146(3):272-80. PubMed ID: 15099569
    [Abstract] [Full Text] [Related]

  • 7. Interdomain cooperativity of calmodulin bound to melittin preferentially increases calcium affinity of sites I and II.
    Newman RA, Van Scyoc WS, Sorensen BR, Jaren OR, Shea MA.
    Proteins; 2008 Jun 10; 71(4):1792-812. PubMed ID: 18175310
    [Abstract] [Full Text] [Related]

  • 8. Solution X-ray scattering reveals a novel structure of calmodulin complexed with a binding domain peptide from the HIV-1 matrix protein p17.
    Izumi Y, Watanabe H, Watanabe N, Aoyama A, Jinbo Y, Hayashi N.
    Biochemistry; 2008 Jul 08; 47(27):7158-66. PubMed ID: 18553937
    [Abstract] [Full Text] [Related]

  • 9. Basic interdomain boundary residues in calmodulin decrease calcium affinity of sites I and II by stabilizing helix-helix interactions.
    Faga LA, Sorensen BR, VanScyoc WS, Shea MA.
    Proteins; 2003 Feb 15; 50(3):381-91. PubMed ID: 12557181
    [Abstract] [Full Text] [Related]

  • 10. Dynamics and entropy of a calmodulin-peptide complex studied by NMR and molecular dynamics.
    Prabhu NV, Lee AL, Wand AJ, Sharp KA.
    Biochemistry; 2003 Jan 21; 42(2):562-70. PubMed ID: 12525185
    [Abstract] [Full Text] [Related]

  • 11. Conformational dynamics of yeast calmodulin in the Ca(2+)-bound state probed using NMR relaxation dispersion.
    Ogura K, Okamura H, Katahira M, Katoh E, Inagaki F.
    FEBS Lett; 2012 Jul 30; 586(16):2548-54. PubMed ID: 22750477
    [Abstract] [Full Text] [Related]

  • 12. Structural and dynamic characterization of a neuron-specific protein kinase C substrate, neurogranin.
    Ran X, Miao HH, Sheu FS, Yang D.
    Biochemistry; 2003 May 06; 42(17):5143-50. PubMed ID: 12718558
    [Abstract] [Full Text] [Related]

  • 13. Helix mobility and recognition function of the rat thyroid transcription factor 1 homeodomain - hints from 15N-NMR relaxation studies.
    Gümral D, Nadalin L, Corazza A, Fogolari F, Damante G, Viglino P, Esposito G.
    FEBS J; 2008 Feb 06; 275(3):435-48. PubMed ID: 18167145
    [Abstract] [Full Text] [Related]

  • 14. Protein dynamics measurements by TROSY-based NMR experiments.
    Zhu G, Xia Y, Nicholson LK, Sze KH.
    J Magn Reson; 2000 Apr 06; 143(2):423-6. PubMed ID: 10729271
    [Abstract] [Full Text] [Related]

  • 15. Temperature dependence of anisotropic protein backbone dynamics.
    Wang T, Cai S, Zuiderweg ER.
    J Am Chem Soc; 2003 Jul 16; 125(28):8639-43. PubMed ID: 12848571
    [Abstract] [Full Text] [Related]

  • 16. Characterization of the backbone and side chain dynamics of the CaM-CaMKIp complex reveals microscopic contributions to protein conformational entropy.
    Frederick KK, Kranz JK, Wand AJ.
    Biochemistry; 2006 Aug 15; 45(32):9841-8. PubMed ID: 16893184
    [Abstract] [Full Text] [Related]

  • 17. Hydration dependence of backbone and side chain polylysine dynamics: a 13C solid-state NMR and IR spectroscopy study.
    Krushelnitsky A, Faizullin D, Reichert D.
    Biopolymers; 2004 Jan 15; 73(1):1-15. PubMed ID: 14691935
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Characterization of enzyme motions by solution NMR relaxation dispersion.
    Loria JP, Berlow RB, Watt ED.
    Acc Chem Res; 2008 Feb 15; 41(2):214-21. PubMed ID: 18281945
    [Abstract] [Full Text] [Related]

  • 20. Analysis of slow interdomain motion of macromolecules using NMR relaxation data.
    Baber JL, Szabo A, Tjandra N.
    J Am Chem Soc; 2001 May 02; 123(17):3953-9. PubMed ID: 11457145
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.