These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
143 related items for PubMed ID: 16222720
1. Differential proteomic analysis of proteins in wheat spikes induced by Fusarium graminearum. Wang Y, Yang L, Xu H, Li Q, Ma Z, Chu C. Proteomics; 2005 Nov; 5(17):4496-503. PubMed ID: 16222720 [Abstract] [Full Text] [Related]
2. Identification of differentially regulated proteins in response to a compatible interaction between the pathogen Fusarium graminearum and its host, Triticum aestivum. Zhou W, Eudes F, Laroche A. Proteomics; 2006 Aug; 6(16):4599-609. PubMed ID: 16858732 [Abstract] [Full Text] [Related]
3. Fungal development and induction of defense response genes during early infection of wheat spikes by Fusarium graminearum. Pritsch C, Muehlbauer GJ, Bushnell WR, Somers DA, Vance CP. Mol Plant Microbe Interact; 2000 Feb; 13(2):159-69. PubMed ID: 10659706 [Abstract] [Full Text] [Related]
4. Functional and comparative bioinformatic analysis of expressed genes from wheat spikes infected with Fusarium graminearum. Kruger WM, Pritsch C, Chao S, Muehlbauer GJ. Mol Plant Microbe Interact; 2002 May; 15(5):445-55. PubMed ID: 12036275 [Abstract] [Full Text] [Related]
5. Development of an integrated approach for evaluation of 2-D gel image analysis: impact of multiple proteins in single spots on comparative proteomics in conventional 2-D gel/MALDI workflow. Yang Y, Thannhauser TW, Li L, Zhang S. Electrophoresis; 2007 Jun; 28(12):2080-94. PubMed ID: 17486657 [Abstract] [Full Text] [Related]
6. Identification of differentially expressed proteins in poplar leaves induced by Marssonina brunnea f. sp. Multigermtubi. Yuan K, Zhang B, Zhang Y, Cheng Q, Wang M, Huang M. J Genet Genomics; 2008 Jan; 35(1):49-60. PubMed ID: 18222409 [Abstract] [Full Text] [Related]
7. Comparative proteomics of extracellular proteins in vitro and in planta from the pathogenic fungus Fusarium graminearum. Paper JM, Scott-Craig JS, Adhikari ND, Cuomo CA, Walton JD. Proteomics; 2007 Sep; 7(17):3171-83. PubMed ID: 17676664 [Abstract] [Full Text] [Related]
8. Analysis of the wheat and Puccinia triticina (leaf rust) proteomes during a susceptible host-pathogen interaction. Rampitsch C, Bykova NV, McCallum B, Beimcik E, Ens W. Proteomics; 2006 Mar; 6(6):1897-907. PubMed ID: 16479535 [Abstract] [Full Text] [Related]
9. Wheat cultivar-specific proteins in grain revealed by 2-DE and their application to cultivar identification of flour. Yahata E, Maruyama-Funatsuki W, Nishio Z, Tabiki T, Takata K, Yamamoto Y, Tanida M, Saruyama H. Proteomics; 2005 Oct; 5(15):3942-53. PubMed ID: 16152659 [Abstract] [Full Text] [Related]
10. Identification of putative phosphoproteins in wheat spikes induced by Fusarium graminearum. Ding L, Yang R, Yang G, Cao J, Li P, Zhou Y. Planta; 2016 Mar; 243(3):719-31. PubMed ID: 26669597 [Abstract] [Full Text] [Related]
11. Proteomic profiling of two maize inbreds during early gibberella ear rot infection. Mohammadi M, Anoop V, Gleddie S, Harris LJ. Proteomics; 2011 Sep; 11(18):3675-84. PubMed ID: 21751381 [Abstract] [Full Text] [Related]
12. Identification of proteins induced or upregulated by Fusarium head blight infection in the spikes of hexaploid wheat (Triticum aestivum). Zhou W, Kolb FL, Riechers DE. Genome; 2005 Oct; 48(5):770-80. PubMed ID: 16391683 [Abstract] [Full Text] [Related]
13. Transcriptome analysis of the barley-Fusarium graminearum interaction. Boddu J, Cho S, Kruger WM, Muehlbauer GJ. Mol Plant Microbe Interact; 2006 Apr; 19(4):407-17. PubMed ID: 16610744 [Abstract] [Full Text] [Related]
14. Analysis of early events in the interaction between Fusarium graminearum and the susceptible barley (Hordeum vulgare) cultivar Scarlett. Yang F, Jensen JD, Svensson B, Jørgensen HJ, Collinge DB, Finnie C. Proteomics; 2010 Nov; 10(21):3748-55. PubMed ID: 20925056 [Abstract] [Full Text] [Related]
15. Differential expression of proteins in response to the interaction between the pathogen Fusarium graminearum and its host, Hordeum vulgare. Geddes J, Eudes F, Laroche A, Selinger LB. Proteomics; 2008 Feb; 8(3):545-54. PubMed ID: 18232057 [Abstract] [Full Text] [Related]
16. 2-D DIGE reveals changes in wheat xylanase inhibitor protein families due to Fusarium graminearum DeltaTri5 infection and grain development. Dornez E, Croes E, Gebruers K, Carpentier S, Swennen R, Laukens K, Witters E, Urban M, Delcour JA, Courtin CM. Proteomics; 2010 Jun; 10(12):2303-19. PubMed ID: 20391529 [Abstract] [Full Text] [Related]
17. Profiling of myelin proteins by 2D-gel electrophoresis and multidimensional liquid chromatography coupled to MALDI TOF-TOF mass spectrometry. Vanrobaeys F, Van Coster R, Dhondt G, Devreese B, Van Beeumen J. J Proteome Res; 2005 Jun; 4(6):2283-93. PubMed ID: 16335977 [Abstract] [Full Text] [Related]
18. Proteomic analyses of Fusarium graminearum grown under mycotoxin-inducing conditions. Taylor RD, Saparno A, Blackwell B, Anoop V, Gleddie S, Tinker NA, Harris LJ. Proteomics; 2008 Jun; 8(11):2256-65. PubMed ID: 18452225 [Abstract] [Full Text] [Related]
19. Proteomic analysis of fungal host factors differentially expressed by Fusarium graminearum infected with Fusarium graminearum virus-DK21. Kwon SJ, Cho SY, Lee KM, Yu J, Son M, Kim KH. Virus Res; 2009 Sep; 144(1-2):96-106. PubMed ID: 19374926 [Abstract] [Full Text] [Related]
20. [Analysis of differential proteins in laryngeal carcinoma cell line Hep-2 with transfection of LCRG1]. Zhang XP, Xiao ZQ, Chen ZC, Li C, Li JL, Yu YH, Ouyang YM, Feng XP, Zhang PF. Ai Zheng; 2006 Jan; 25(1):22-8. PubMed ID: 16405744 [Abstract] [Full Text] [Related] Page: [Next] [New Search]