These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
418 related items for PubMed ID: 16229154
1. Ultrastructural changes accompanying development of fatigue in frog twitch skeletal muscle fibres. Lipska E, Novotova M, Radzyukevich T, Zahradnik I. Endocr Regul; 2005 Jun; 39(2):43-52. PubMed ID: 16229154 [Abstract] [Full Text] [Related]
2. Different effects of verapamil and low calcium on repetitive contractile activity of frog fatigue-resistant and easily-fatigued muscle fibres. Lipská E, Radzyukevich T. Gen Physiol Biophys; 1999 Jun; 18(2):139-53. PubMed ID: 10517289 [Abstract] [Full Text] [Related]
3. Characterization of tension decline in different types of fatigue-resistant skeletal muscle fibres of the frog. Low extracellular calcium effects. Radzyukevich T, Lipská E, Pavelková J, Zacharová D. Gen Physiol Biophys; 1993 Oct; 12(5):473-90. PubMed ID: 8181694 [Abstract] [Full Text] [Related]
4. Resistance to fatigue of individual Xenopus single skeletal muscle fibres is correlated with mitochondrial volume density. Stary CM, Mathieu-Costello O, Hogan MC. Exp Physiol; 2004 Sep; 89(5):617-21. PubMed ID: 15258122 [Abstract] [Full Text] [Related]
5. Mitochondrial function in intact skeletal muscle fibres of creatine kinase deficient mice. Bruton JD, Dahlstedt AJ, Abbate F, Westerblad H. J Physiol; 2003 Oct 15; 552(Pt 2):393-402. PubMed ID: 14561823 [Abstract] [Full Text] [Related]
6. Creatine kinase injection restores contractile function in creatine-kinase-deficient mouse skeletal muscle fibres. Dahlstedt AJ, Katz A, Tavi P, Westerblad H. J Physiol; 2003 Mar 01; 547(Pt 2):395-403. PubMed ID: 12562893 [Abstract] [Full Text] [Related]
7. Caffeine administration results in greater tension development in previously fatigued canine muscle in situ. Howlett RA, Kelley KM, Grassi B, Gladden LB, Hogan MC. Exp Physiol; 2005 Nov 01; 90(6):873-9. PubMed ID: 16118234 [Abstract] [Full Text] [Related]
8. Regulation of myoplasmic Ca(2+) in genetically obese (ob/ob) mouse single skeletal muscle fibres. Bruton JD, Katz A, Lännergren J, Abbate F, Westerblad H. Pflugers Arch; 2002 Sep 01; 444(6):692-9. PubMed ID: 12355168 [Abstract] [Full Text] [Related]
9. Mitochondrial and myoplasmic [Ca2+] in single fibres from mouse limb muscles during repeated tetanic contractions. Bruton J, Tavi P, Aydin J, Westerblad H, Lännergren J. J Physiol; 2003 Aug 15; 551(Pt 1):179-90. PubMed ID: 12815178 [Abstract] [Full Text] [Related]
10. [Factors modulating recovery rate after intermittent tetanic fatigue in atrophic soleus]. Li H, Jiao B, Yu ZB. Sheng Li Xue Bao; 2007 Jun 25; 59(3):369-74. PubMed ID: 17579795 [Abstract] [Full Text] [Related]
11. A novel thienylhydrazone, (2-thienylidene)3,4-methylenedioxybenzoylhydrazine, increases inotropism and decreases fatigue of skeletal muscle. Gonzalez-Serratos H, Chang R, Pereira EF, Castro NG, Aracava Y, Melo PA, Lima PC, Fraga CA, Barreiro EJ, Albuquerque EX. J Pharmacol Exp Ther; 2001 Nov 25; 299(2):558-66. PubMed ID: 11602667 [Abstract] [Full Text] [Related]
12. Moderate fatigue studied at great sarcomere lengths in frog single muscle fibres. Lou F, Sun YB. Acta Physiol Scand; 1994 Oct 25; 152(2):163-72. PubMed ID: 7839860 [Abstract] [Full Text] [Related]
13. Effects of hydrostatic pressure on fatiguing frog muscle fibres. Vawda F, Ranatunga KW, Geeves MA. J Muscle Res Cell Motil; 1996 Dec 25; 17(6):631-6. PubMed ID: 8994082 [Abstract] [Full Text] [Related]
14. Associations between force and fatigue in fast-twitch motor units of a cat hindlimb muscle. Laouris Y, Bevan L, Reinking RM, Stuart DG. Can J Physiol Pharmacol; 2004 Dec 25; 82(8-9):577-88. PubMed ID: 15523515 [Abstract] [Full Text] [Related]
15. Dependence of fatigue properties on the pattern of stimulation in the rat diaphragm muscle. Gölgeli A, Ozesmi C, Ozesmi M. Indian J Physiol Pharmacol; 1995 Oct 25; 39(4):315-22. PubMed ID: 8582742 [Abstract] [Full Text] [Related]
16. Contractile dysfunctions in ATP-dependent K+ channel-deficient mouse muscle during fatigue involve excessive depolarization and Ca2+ influx through L-type Ca2+ channels. Cifelli C, Boudreault L, Gong B, Bercier JP, Renaud JM. Exp Physiol; 2008 Oct 25; 93(10):1126-38. PubMed ID: 18586858 [Abstract] [Full Text] [Related]
17. Myofibrillar fatigue versus failure of activation during repetitive stimulation of frog muscle fibres. Edman KA, Lou F. J Physiol; 1992 Nov 25; 457():655-73. PubMed ID: 1297847 [Abstract] [Full Text] [Related]
18. Effects of fatigue on depolarization- and caffeine-induced contractures of skinned fibres. Williams JH. Acta Physiol Scand; 2004 Mar 25; 180(3):265-9. PubMed ID: 14962008 [Abstract] [Full Text] [Related]
19. Slow and fast fatigable frog muscle fibres: electrophysiological and histochemical characteristics. Vydevska-Chichova M, Mileva K, Todorova R, Dimitrova M, Radicheva N. Gen Physiol Biophys; 2005 Dec 25; 24(4):381-96. PubMed ID: 16474184 [Abstract] [Full Text] [Related]
20. Mechanisms of fatigue induced by isometric contractions in exercising humans and in mouse isolated single muscle fibres. Place N, Bruton JD, Westerblad H. Clin Exp Pharmacol Physiol; 2009 Mar 25; 36(3):334-9. PubMed ID: 18671711 [Abstract] [Full Text] [Related] Page: [Next] [New Search]