These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


381 related items for PubMed ID: 16230898

  • 1. Audiometric predictions using stimulus-frequency otoacoustic emissions and middle ear measurements.
    Ellison JC, Keefe DH.
    Ear Hear; 2005 Oct; 26(5):487-503. PubMed ID: 16230898
    [Abstract] [Full Text] [Related]

  • 2. Chirp-Evoked Otoacoustic Emissions and Middle Ear Absorbance for Monitoring Ototoxicity in Cystic Fibrosis Patients.
    Garinis AC, Keefe DH, Hunter LL, Fitzpatrick DF, Putterman DB, McMillan GP, Gold JA, Feeney MP.
    Ear Hear; 2018 Oct; 39(1):69-84. PubMed ID: 28708814
    [Abstract] [Full Text] [Related]

  • 3. [Effect of inner ear hearing loss on delayed otoacoustic emissions (TEOAE) and distortion products (DPOAE)].
    Hoth S.
    Laryngorhinootologie; 1996 Dec; 75(12):709-18. PubMed ID: 9081275
    [Abstract] [Full Text] [Related]

  • 4. Tone-burst and click-evoked otoacoustic emissions in subjects with hearing loss above 0.25, 0.5, and 1 kHz.
    Jedrzejczak WW, Kochanek K, Trzaskowski B, Pilka E, Skarzynski PH, Skarzynski H.
    Ear Hear; 2012 Dec; 33(6):757-67. PubMed ID: 22710662
    [Abstract] [Full Text] [Related]

  • 5. Exploring the Influence of Extended High-Frequency Hearing on Cochlear Functioning at Lower Frequencies.
    Mishra SK, Rodrigo H, Balan JR.
    J Speech Lang Hear Res; 2024 Jul 09; 67(7):2473-2482. PubMed ID: 38820241
    [Abstract] [Full Text] [Related]

  • 6. Estimating Hearing Thresholds From Stimulus-Frequency Otoacoustic Emissions.
    Gong Q, Liu Y, Peng Z.
    Trends Hear; 2020 Jul 09; 24():2331216520960053. PubMed ID: 32965182
    [Abstract] [Full Text] [Related]

  • 7. Assessing Sensorineural Hearing Loss Using Various Transient-Evoked Otoacoustic Emission Stimulus Conditions.
    Putterman DB, Keefe DH, Hunter LL, Garinis AC, Fitzpatrick DF, McMillan GP, Feeney MP.
    Ear Hear; 2017 Jul 09; 38(4):507-520. PubMed ID: 28437273
    [Abstract] [Full Text] [Related]

  • 8. Profiles of Stimulus-Frequency Otoacoustic Emissions from 0.5 to 20 kHz in Humans.
    Dewey JB, Dhar S.
    J Assoc Res Otolaryngol; 2017 Feb 09; 18(1):89-110. PubMed ID: 27681700
    [Abstract] [Full Text] [Related]

  • 9. Reliability and clinical test performance of cochlear reflectance.
    Rasetshwane DM, Fultz SE, Kopun JG, Gorga MP, Neely ST.
    Ear Hear; 2015 Jan 09; 36(1):111-24. PubMed ID: 25192133
    [Abstract] [Full Text] [Related]

  • 10. Deep Learning Models for Predicting Hearing Thresholds Based on Swept-Tone Stimulus-Frequency Otoacoustic Emissions.
    Liu Y, Gong Q.
    Ear Hear; 2015 Jan 09; 45(2):465-475. PubMed ID: 37990395
    [Abstract] [Full Text] [Related]

  • 11. Maximising the ability of stimulus-frequency otoacoustic emissions to predict hearing status and thresholds using machine-learning models.
    Liu Y, Xu R, Gong Q.
    Int J Audiol; 2021 Apr 09; 60(4):263-273. PubMed ID: 32959697
    [Abstract] [Full Text] [Related]

  • 12. Analysis of subtle auditory dysfunctions in young normal-hearing subjects affected by Williams syndrome.
    Paglialonga A, Barozzi S, Brambilla D, Soi D, Cesarani A, Spreafico E, Tognola G.
    Int J Pediatr Otorhinolaryngol; 2014 Nov 09; 78(11):1861-5. PubMed ID: 25193583
    [Abstract] [Full Text] [Related]

  • 13. Relationships among standard and wideband measures of middle ear function and distortion product otoacoustic emissions.
    Schairer KS, Morrison B, Szewczyk E, Fowler CG.
    J Am Acad Audiol; 2011 May 09; 22(5):253-64. PubMed ID: 21756841
    [Abstract] [Full Text] [Related]

  • 14. Using a combination of click- and tone burst-evoked auditory brain stem response measurements to estimate pure-tone thresholds.
    Gorga MP, Johnson TA, Kaminski JR, Beauchaine KL, Garner CA, Neely ST.
    Ear Hear; 2006 Feb 09; 27(1):60-74. PubMed ID: 16446565
    [Abstract] [Full Text] [Related]

  • 15. Towards a joint reflection-distortion otoacoustic emission profile: Results in normal and impaired ears.
    Abdala C, Kalluri R.
    J Acoust Soc Am; 2017 Aug 09; 142(2):812. PubMed ID: 28863614
    [Abstract] [Full Text] [Related]

  • 16. Prevalence of dead regions in subjects with sensorineural hearing loss.
    Vinay, Moore BC.
    Ear Hear; 2007 Apr 09; 28(2):231-41. PubMed ID: 17496673
    [Abstract] [Full Text] [Related]

  • 17. Cochlear Mechanisms and Otoacoustic Emission Test Performance.
    Go NA, Stamper GC, Johnson TA.
    Ear Hear; 2019 Apr 09; 40(2):401-417. PubMed ID: 29952805
    [Abstract] [Full Text] [Related]

  • 18. From laboratory to clinic: a large scale study of distortion product otoacoustic emissions in ears with normal hearing and ears with hearing loss.
    Gorga MP, Neely ST, Ohlrich B, Hoover B, Redner J, Peters J.
    Ear Hear; 1997 Dec 09; 18(6):440-55. PubMed ID: 9416447
    [Abstract] [Full Text] [Related]

  • 19. Transient-evoked otoacoustic emissions in a group of professional singers who have normal pure-tone hearing thresholds.
    Hamdan AL, Abouchacra KS, Zeki Al Hazzouri AG, Zaytoun G.
    Ear Hear; 2008 Jun 09; 29(3):360-77. PubMed ID: 18382377
    [Abstract] [Full Text] [Related]

  • 20. Low-frequency otoacoustic emissions in schoolchildren measured by two commercial devices.
    Jedrzejczak WW, Piotrowska A, Kochanek K, Sliwa L, Skarzynski H.
    Int J Pediatr Otorhinolaryngol; 2013 Oct 09; 77(10):1724-8. PubMed ID: 23972827
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.