These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


136 related items for PubMed ID: 1623133

  • 1. Hydrophobicity-induced pK shifts in elastin protein-based polymers.
    Urry DW, Peng SQ, Parker TM.
    Biopolymers; 1992 Apr; 32(4):373-9. PubMed ID: 1623133
    [Abstract] [Full Text] [Related]

  • 2. Differential scanning calorimetry studies of NaCl effect on the inverse temperature transition of some elastin-based polytetra-, polypenta-, and polynonapeptides.
    Luan CH, Parker TM, Prasad KU, Urry DW.
    Biopolymers; 1991 Apr; 31(5):465-75. PubMed ID: 1868163
    [Abstract] [Full Text] [Related]

  • 3. Differential scanning calorimetry studies of the inverse temperature transition of the polypentapeptide of elastin and its analogues.
    Luan CH, Harris RD, Prasad KU, Urry DW.
    Biopolymers; 1990 Dec; 29(14):1699-706. PubMed ID: 2207282
    [Abstract] [Full Text] [Related]

  • 4. Hydrophobicity of amino acid residues: differential scanning calorimetry and synthesis of the aromatic analogues of the polypentapeptide of elastin.
    Luan CH, Parker TM, Gowda DC, Urry DW.
    Biopolymers; 1992 Sep; 32(9):1251-61. PubMed ID: 1420992
    [Abstract] [Full Text] [Related]

  • 5. Short elastin-like peptides exhibit the same temperature-induced structural transitions as elastin polymers: implications for protein engineering.
    Reiersen H, Clarke AR, Rees AR.
    J Mol Biol; 1998 Sep; 283(1):255-64. PubMed ID: 9761688
    [Abstract] [Full Text] [Related]

  • 6. Polytetrapeptide of elastin. Temperature-correlated elastomeric force and structure development.
    Urry DW, Harris RD, Long MM, Prasad KU.
    Int J Pept Protein Res; 1986 Dec; 28(6):649-60. PubMed ID: 3818176
    [Abstract] [Full Text] [Related]

  • 7. Effect of NaCl on the exothermic and endothermic components of the inverse temperature transition of a model elastin-like polymer.
    Reguera J, Urry DW, Parker TM, McPherson DT, Rodríguez-Cabello JC.
    Biomacromolecules; 2007 Feb; 8(2):354-8. PubMed ID: 17291058
    [Abstract] [Full Text] [Related]

  • 8. How conformational transition depends on hydrophobicity of elastin-like polypeptides.
    Arkin H, Bilsel M.
    Eur Phys J E Soft Matter; 2010 Mar; 31(3):327-32. PubMed ID: 20229015
    [Abstract] [Full Text] [Related]

  • 9. Carbon-13 NMR relaxation studies demonstrate an inverse temperature transition in the elastin polypentapeptide.
    Urry DW, Trapane TL, Iqbal M, Venkatachalam CM, Prasad KU.
    Biochemistry; 1985 Sep 10; 24(19):5182-9. PubMed ID: 4074687
    [Abstract] [Full Text] [Related]

  • 10. The molecular basis of the temperature- and pH-induced conformational transitions in elastin-based peptides.
    Li B, Daggett V.
    Biopolymers; 2003 Jan 10; 68(1):121-9. PubMed ID: 12579584
    [Abstract] [Full Text] [Related]

  • 11. Conformation characterization of cyclopentapeptide, L.Val-L.Pro-Gly-L.Val-Gly: a repeating analogue of elastin.
    Khaled MA, Venkatachalam CM, Sugano H, Urry DW.
    Int J Pept Protein Res; 1981 Jan 10; 17(1):23-33. PubMed ID: 7228489
    [Abstract] [Full Text] [Related]

  • 12. D X Ala3 analog of elastin polypentapeptide. An elastomer with an increased young's modulus.
    Urry DW, Trapane TL, Wood SA, Harris RD, Walker JT, Prasad KU.
    Int J Pept Protein Res; 1984 Apr 10; 23(4):425-34. PubMed ID: 6724804
    [Abstract] [Full Text] [Related]

  • 13. Hydrophobicity scale for proteins based on inverse temperature transitions.
    Urry DW, Gowda DC, Parker TM, Luan CH, Reid MC, Harris CM, Pattanaik A, Harris RD.
    Biopolymers; 1992 Sep 10; 32(9):1243-50. PubMed ID: 1420991
    [Abstract] [Full Text] [Related]

  • 14. Nanometric design of extraordinary hydrophobic-induced pKa shifts for aspartic acid: relevance to protein mechanisms.
    Urry DW, Gowda DC, Peng S, Parker TM, Jing N, Harris RD.
    Biopolymers; 1994 Jul 10; 34(7):889-96. PubMed ID: 8054471
    [Abstract] [Full Text] [Related]

  • 15. Inverse temperature transition of a biomimetic elastin model: reactive flux analysis of folding/unfolding and its coupling to solvent dielectric relaxation.
    Baer M, Schreiner E, Kohlmeyer A, Rousseau R, Marx D.
    J Phys Chem B; 2006 Mar 02; 110(8):3576-87. PubMed ID: 16494413
    [Abstract] [Full Text] [Related]

  • 16. Differential scanning calorimetry study of the hydrophobic hydration of the elastin-based polypentapeptide, poly(VPGVG), from deficiency to excess of water.
    Rodríguez-Cabello JC, Alonso M, Pérez T, Herguedas MM.
    Biopolymers; 2000 Oct 05; 54(4):282-8. PubMed ID: 10867636
    [Abstract] [Full Text] [Related]

  • 17. The molecular basis for the inverse temperature transition of elastin.
    Li B, Alonso DO, Daggett V.
    J Mol Biol; 2001 Jan 19; 305(3):581-92. PubMed ID: 11152614
    [Abstract] [Full Text] [Related]

  • 18. Two-dimensional proton NMR studies on poly(VPGVG) and its cyclic conformational correlate, cyclo(VPGVG)3.
    Urry DW, Chang DK, Krishna NR, Huang DH, Trapane TL, Prasad KU.
    Biopolymers; 1989 Apr 19; 28(4):819-33. PubMed ID: 2720125
    [Abstract] [Full Text] [Related]

  • 19. Structure and dynamics of two elastin-like polypentapeptides studied by NMR spectroscopy.
    Kurková D, Kríz J, Schmidt P, Dybal J, Rodríguez-Cabello JC, Alonso M.
    Biomacromolecules; 2003 Apr 19; 4(3):589-601. PubMed ID: 12741774
    [Abstract] [Full Text] [Related]

  • 20. Synthesis of 4% Glu-containing Val1 and Ile1-polypentapeptides: model protein systems for demonstrating mechanochemical coupling.
    Zhang H, Prasad KU, Urry DW.
    J Protein Chem; 1989 Apr 19; 8(2):173-82. PubMed ID: 2567602
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.