These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
199 related items for PubMed ID: 16231903
1. Probing structure and functional dynamics of (large) proteins with aromatic rings: L-GFT-TROSY (4,3)D HCCH NMR spectroscopy. Eletsky A, Atreya HS, Liu G, Szyperski T. J Am Chem Soc; 2005 Oct 26; 127(42):14578-9. PubMed ID: 16231903 [Abstract] [Full Text] [Related]
2. G-matrix Fourier transform NOESY-based protocol for high-quality protein structure determination. Shen Y, Atreya HS, Liu G, Szyperski T. J Am Chem Soc; 2005 Jun 29; 127(25):9085-99. PubMed ID: 15969587 [Abstract] [Full Text] [Related]
3. Fast (4,3)D GFT-TS NMR for NOESY of small to medium-sized proteins. Xia Y, Veeraraghavan S, Zhu Q, Gao X. J Magn Reson; 2008 Jan 29; 190(1):142-8. PubMed ID: 17923427 [Abstract] [Full Text] [Related]
4. Resonance assignment of proteins with high shift degeneracy based on 5D spectral information encoded in G2FT NMR experiments. Atreya HS, Eletsky A, Szyperski T. J Am Chem Soc; 2005 Apr 06; 127(13):4554-5. PubMed ID: 15796503 [Abstract] [Full Text] [Related]
5. Cooling overall spin temperature: protein NMR experiments optimized for longitudinal relaxation effects. Deschamps M, Campbell ID. J Magn Reson; 2006 Feb 06; 178(2):206-11. PubMed ID: 16249110 [Abstract] [Full Text] [Related]
6. Optimization of three-dimensional TROSY-type HCCH NMR correlation of aromatic (1)H-(13)C groups in proteins. Meissner A, Sorensen OW. J Magn Reson; 1999 Aug 06; 139(2):447-50. PubMed ID: 10423385 [Abstract] [Full Text] [Related]
11. GFT NMR, a new approach to rapidly obtain precise high-dimensional NMR spectral information. Kim S, Szyperski T. J Am Chem Soc; 2003 Feb 05; 125(5):1385-93. PubMed ID: 12553842 [Abstract] [Full Text] [Related]
12. Suppression of diagonal peaks in three-dimensional protein NMR TROSY-type HCCH correlation experiments. Meissner A, Sorensen OW. J Magn Reson; 2000 May 05; 144(1):171-4. PubMed ID: 10783289 [Abstract] [Full Text] [Related]
13. Incorporating 1H chemical shift determination into 13C-direct detected spectroscopy of intrinsically disordered proteins in solution. O'Hare B, Benesi AJ, Showalter SA. J Magn Reson; 2009 Oct 05; 200(2):354-8. PubMed ID: 19648037 [Abstract] [Full Text] [Related]
14. Probing invisible, low-populated States of protein molecules by relaxation dispersion NMR spectroscopy: an application to protein folding. Korzhnev DM, Kay LE. Acc Chem Res; 2008 Mar 05; 41(3):442-51. PubMed ID: 18275162 [Abstract] [Full Text] [Related]
15. G-matrix Fourier transform NMR spectroscopy for complete protein resonance assignment. Atreya HS, Szyperski T. Proc Natl Acad Sci U S A; 2004 Jun 29; 101(26):9642-7. PubMed ID: 15210958 [Abstract] [Full Text] [Related]
16. Aromatic ring-flipping in supercooled water: implications for NMR-based structural biology of proteins. Skalicky JJ, Mills JL, Sharma S, Szyperski T. J Am Chem Soc; 2001 Jan 24; 123(3):388-97. PubMed ID: 11456540 [Abstract] [Full Text] [Related]
17. TROSY-based correlation and NOE spectroscopy for NMR structural studies of large proteins. Zhu G, Xia Y, Lin D, Gao X. Methods Mol Biol; 2004 Jan 24; 278():57-78. PubMed ID: 15317991 [Abstract] [Full Text] [Related]