These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
116 related items for PubMed ID: 16234177
1. Cytochrome P450cam-monoterpene interactions. Van Roon A, Parsons JR, Govers HA. SAR QSAR Environ Res; 2005 Aug; 16(4):369-84. PubMed ID: 16234177 [Abstract] [Full Text] [Related]
2. Substrate mobility in thiocamphor-bound cytochrome P450cam: an explanation of the conflict between the observed product profile and the X-ray structure. Paulsen MD, Ornstein RL. Protein Eng; 1993 Jun; 6(4):359-65. PubMed ID: 8332592 [Abstract] [Full Text] [Related]
3. Predicting the product specificity and coupling of cytochrome P450cam. Paulsen MD, Ornstein RL. J Comput Aided Mol Des; 1992 Oct; 6(5):449-60. PubMed ID: 1474394 [Abstract] [Full Text] [Related]
4. How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms. Lüdemann SK, Lounnas V, Wade RC. J Mol Biol; 2000 Nov 10; 303(5):797-811. PubMed ID: 11061976 [Abstract] [Full Text] [Related]
5. Stereoselective hydroxylation of norcamphor by cytochrome P450cam. Experimental verification of molecular dynamics simulations. Loida PJ, Sligar SG, Paulsen MD, Arnold GE, Ornstein RL. J Biol Chem; 1995 Mar 10; 270(10):5326-30. PubMed ID: 7890644 [Abstract] [Full Text] [Related]
6. Mechanisms of reaction in cytochrome P450: Hydroxylation of camphor in P450cam. Zurek J, Foloppe N, Harvey JN, Mulholland AJ. Org Biomol Chem; 2006 Nov 07; 4(21):3931-7. PubMed ID: 17047872 [Abstract] [Full Text] [Related]
7. Molecular recognition in (+)-alpha-pinene oxidation by cytochrome P450cam. Bell SG, Chen X, Sowden RJ, Xu F, Williams JN, Wong LL, Rao Z. J Am Chem Soc; 2003 Jan 22; 125(3):705-14. PubMed ID: 12526670 [Abstract] [Full Text] [Related]
8. Crystal structure of cytochrome P-450cam complexed with the (1S)-camphor enantiomer. Schlichting I, Jung C, Schulze H. FEBS Lett; 1997 Oct 06; 415(3):253-7. PubMed ID: 9357977 [Abstract] [Full Text] [Related]
9. Chemotaxis by Pseudomonas putida (ATCC 17453) towards camphor involves cytochrome P450cam (CYP101A1). Balaraman P, Plettner E. Biochim Biophys Acta Gen Subj; 2019 Feb 06; 1863(2):304-312. PubMed ID: 30391161 [Abstract] [Full Text] [Related]
10. Controlling the regiospecificity and coupling of cytochrome P450cam: T185F mutant increases coupling and abolishes 3-hydroxynorcamphor product. Paulsen MD, Filipovic D, Sligar SG, Ornstein RL. Protein Sci; 1993 Mar 06; 2(3):357-65. PubMed ID: 8453374 [Abstract] [Full Text] [Related]
11. A theoretical study on the mechanism of camphor hydroxylation by compound I of cytochrome p450. Kamachi T, Yoshizawa K. J Am Chem Soc; 2003 Apr 16; 125(15):4652-61. PubMed ID: 12683838 [Abstract] [Full Text] [Related]
12. Analysis of active site motions from a 175 picosecond molecular dynamics simulation of camphor-bound cytochrome P450cam. Paulsen MD, Bass MB, Ornstein RL. J Biomol Struct Dyn; 1991 Oct 16; 9(2):187-203. PubMed ID: 1741957 [Abstract] [Full Text] [Related]
13. Theoretical study of the product specificity in the hydroxylation of camphor, norcamphor, 5,5-difluorocamphor, and pericyclocamphanone by cytochrome P-450cam. Collins JR, Loew GH. J Biol Chem; 1988 Mar 05; 263(7):3164-70. PubMed ID: 3343243 [Abstract] [Full Text] [Related]
14. How do substrates enter and products exit the buried active site of cytochrome P450cam? 2. Steered molecular dynamics and adiabatic mapping of substrate pathways. Lüdemann SK, Lounnas V, Wade RC. J Mol Biol; 2000 Nov 10; 303(5):813-30. PubMed ID: 11061977 [Abstract] [Full Text] [Related]
15. Spectral intermediate in the reaction of ferrous cytochrome P450cam with superoxide anion. Kobayashi K, Iwamoto T, Honda K. Biochem Biophys Res Commun; 1994 Jun 30; 201(3):1348-55. PubMed ID: 8024579 [Abstract] [Full Text] [Related]
16. Improved binding of cytochrome P450cam substrate analogues designed to fill extra space in the substrate binding pocket. Helms V, Deprez E, Gill E, Barret C, Hui Bon Hoa G, Wade RC. Biochemistry; 1996 Feb 06; 35(5):1485-99. PubMed ID: 8634279 [Abstract] [Full Text] [Related]
17. Structural changes in cytochrome P-450cam effected by the binding of the enantiomers (1R)-camphor and (1S)-camphor. Schulze H, Hoa GH, Helms V, Wade RC, Jung C. Biochemistry; 1996 Nov 12; 35(45):14127-38. PubMed ID: 8916898 [Abstract] [Full Text] [Related]
19. Substrates modulate the rate-determining step for CO binding in cytochrome P450cam (CYP101). A high-pressure stopped-flow study. Jung C, Bec N, Lange R. Eur J Biochem; 2002 Jun 30; 269(12):2989-96. PubMed ID: 12071963 [Abstract] [Full Text] [Related]
20. High-pressure flash photolysis study of hemoprotein: effects of substrate analogues on the recombination of carbon monoxide to cytochrome P450CAM. Unno M, Ishimori K, Ishimura Y, Morishima I. Biochemistry; 1994 Aug 16; 33(32):9762-8. PubMed ID: 8068655 [Abstract] [Full Text] [Related] Page: [Next] [New Search]