These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


143 related items for PubMed ID: 16234309

  • 1. Effect of peristaltic contractions of the renal pelvic wall on solute concentrations of the renal inner medulla in the hamster.
    Pruitt ME, Knepper MA, Graves B, Schmidt-Nielsen B.
    Am J Physiol Renal Physiol; 2006 Apr; 290(4):F892-6. PubMed ID: 16234309
    [Abstract] [Full Text] [Related]

  • 2. Solute and water transport along an inner medullary collecting duct undergoing peristaltic contractions.
    Layton AT.
    Am J Physiol Renal Physiol; 2019 Sep 01; 317(3):F735-F742. PubMed ID: 31313955
    [Abstract] [Full Text] [Related]

  • 3. Water removal and solute additions determining increases in renal medullary osmolality.
    Schmidt-Nielsen B, Graves B, Roth J.
    Am J Physiol; 1983 May 01; 244(5):F472-82. PubMed ID: 6846537
    [Abstract] [Full Text] [Related]

  • 4. Concentration of solutes in the renal inner medulla: interstitial hyaluronan as a mechano-osmotic transducer.
    Knepper MA, Saidel GM, Hascall VC, Dwyer T.
    Am J Physiol Renal Physiol; 2003 Mar 01; 284(3):F433-46. PubMed ID: 12556362
    [Abstract] [Full Text] [Related]

  • 5. Peristaltic flow of urine in the renal capillary collecting ducts of hamsters.
    Reinking LN, Schmidt-Nielsen B.
    Kidney Int; 1981 Jul 01; 20(1):55-60. PubMed ID: 7300113
    [Abstract] [Full Text] [Related]

  • 6. Occurrence of renal pelvic refluxes during rising urine flow rate in rats and hamsters.
    Schmidt-Nielsen B, Churchill M, Reinking LN.
    Kidney Int; 1980 Oct 01; 18(4):419-31. PubMed ID: 7230608
    [Abstract] [Full Text] [Related]

  • 7. On the function of the mammalian renal papilla and the peristalsis of the surrounding pelvis.
    Schmidt-Nielsen B, Schmidt-Nielsen B.
    Acta Physiol (Oxf); 2011 Jul 01; 202(3):379-85. PubMed ID: 21281458
    [Abstract] [Full Text] [Related]

  • 8. Anatomy of the renal pelvis in the hamster.
    Lacy ER, Schmidt-Nielsen B.
    Am J Anat; 1979 Mar 01; 154(3):291-320. PubMed ID: 433785
    [Abstract] [Full Text] [Related]

  • 9. Calcium-dependent action of osmolality on adenosine 3',5'-monophosphate accumulation in rat renal inner medulla: evidence for a relationship to calcium-responsive arachidonate release and prostaglandin synthesis.
    Craven PA, Briggs R, DeRubertis FR.
    J Clin Invest; 1980 Feb 01; 65(2):529-42. PubMed ID: 6243313
    [Abstract] [Full Text] [Related]

  • 10. Effects of carotid baroreceptor stimulation and renal denervation on the medullary concentration gradient in rat kidneys.
    Keeler R.
    Can J Physiol Pharmacol; 1975 Jun 01; 53(3):340-4. PubMed ID: 1148921
    [Abstract] [Full Text] [Related]

  • 11. Solute composition and heat shock proteins in rat renal medulla.
    Ohno A, Müller E, Fraek ML, Thurau K, Beck F.
    Pflugers Arch; 1997 May 01; 434(1):117-22. PubMed ID: 9094264
    [Abstract] [Full Text] [Related]

  • 12. Interstitial water and solute recovery by inner medullary vasa recta.
    Edwards A, Delong MJ, Pallone TL.
    Am J Physiol Renal Physiol; 2000 Feb 01; 278(2):F257-69. PubMed ID: 10662730
    [Abstract] [Full Text] [Related]

  • 13. Effects of artificial obstruction on the function of the upper urinary tract of Guinea pigs, rats and pigs.
    Tillig B, Mutschke O, Rolle U, Gaunitz U, Asmussen G, Constantinou CE.
    Eur J Pediatr Surg; 2004 Oct 01; 14(5):303-15. PubMed ID: 15543479
    [Abstract] [Full Text] [Related]

  • 14. Mechanical simulation of renal pelvic wall peristalsis in the rat.
    Reinking LN, Veale MC.
    Experientia; 1984 Jun 15; 40(6):540-1. PubMed ID: 6723924
    [Abstract] [Full Text] [Related]

  • 15. Changes in fluid compartments in hamster renal papilla due to peristalsis in the pelvic wall.
    Schmidt-Nielsen B, Graves B.
    Kidney Int; 1982 Dec 15; 22(6):613-25. PubMed ID: 6891728
    [Abstract] [Full Text] [Related]

  • 16. Renal medullary concentrating process: an integrative hypothesis.
    Bonventre JV, Lechene C.
    Am J Physiol; 1980 Dec 15; 239(6):F578-88. PubMed ID: 7446733
    [Abstract] [Full Text] [Related]

  • 17. An inner medullary concentrating process actuated by renal pelvic/calyceal muscle contractions: assessment and hypothesis.
    Pinter GG, Shohet JL.
    Nephron Physiol; 2009 Dec 15; 113(1):p1-6. PubMed ID: 19590248
    [Abstract] [Full Text] [Related]

  • 18. Acute increases of renal medullary osmolality stimulate endothelin release from the kidney.
    Boesen EI, Pollock DM.
    Am J Physiol Renal Physiol; 2007 Jan 15; 292(1):F185-91. PubMed ID: 16912066
    [Abstract] [Full Text] [Related]

  • 19. Two fluid compartments in the renal inner medulla: a view through the keyhole of the concentrating process.
    Pinter GG, Shohet JL.
    Philos Trans A Math Phys Eng Sci; 2006 Jun 15; 364(1843):1551-61. PubMed ID: 16766360
    [Abstract] [Full Text] [Related]

  • 20. Hyperfiltration and inner stripe hypertrophy may explain findings by Gamble and coworkers.
    Layton AT, Pannabecker TL, Dantzler WH, Layton HE.
    Am J Physiol Renal Physiol; 2010 Apr 15; 298(4):F962-72. PubMed ID: 20042460
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.