These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


147 related items for PubMed ID: 16241052

  • 1. [Analysis of multi-component sugar aqueous solution in low-concentration by near-infrared spectrometry].
    Hu B, Chen D, Su QD.
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Jul; 25(7):1049-52. PubMed ID: 16241052
    [Abstract] [Full Text] [Related]

  • 2. Determination of origin and sugars of citrus fruits using genetic algorithm, correspondence analysis and partial least square combined with fiber optic NIR spectroscopy.
    Tewari JC, Dixit V, Cho BK, Malik KA.
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec 01; 71(3):1119-27. PubMed ID: 18424176
    [Abstract] [Full Text] [Related]

  • 3. Short-wavelength near-infrared spectra of sucrose, glucose, and fructose with respect to sugar concentration and temperature.
    Golic M, Walsh K, Lawson P.
    Appl Spectrosc; 2003 Feb 01; 57(2):139-45. PubMed ID: 14610949
    [Abstract] [Full Text] [Related]

  • 4. Pure component selectivity analysis of multivariate calibration models from near-infrared spectra.
    Arnold MA, Small GW, Xiang D, Qui J, Murhammer DW.
    Anal Chem; 2004 May 01; 76(9):2583-90. PubMed ID: 15117201
    [Abstract] [Full Text] [Related]

  • 5. Heterospectral two-dimensional correlation spectroscopy of mid-infrared and Fourier self-deconvolved near-infrared spectra of sugar solutions.
    Cocciardi RA, Ismail AA, Wang Y, Sedman J.
    J Agric Food Chem; 2006 Sep 06; 54(18):6475-81. PubMed ID: 16939300
    [Abstract] [Full Text] [Related]

  • 6. A reference-wavelength-based method for improved analysis of near-infrared spectroscopy.
    Chen Y, Chen W, Shi Z, Yang Y, Xu K.
    Appl Spectrosc; 2009 May 06; 63(5):544-8. PubMed ID: 19470211
    [Abstract] [Full Text] [Related]

  • 7. Comparison of combination and first overtone spectral regions for near-infrared calibration models for glucose and other biomolecules in aqueous solutions.
    Chen J, Arnold MA, Small GW.
    Anal Chem; 2004 Sep 15; 76(18):5405-13. PubMed ID: 15362899
    [Abstract] [Full Text] [Related]

  • 8. Multivariate calibration standardization across instruments for the determination of glucose by Fourier transform near-infrared spectrometry.
    Zhang L, Small GW, Arnold MA.
    Anal Chem; 2003 Nov 01; 75(21):5905-15. PubMed ID: 14588032
    [Abstract] [Full Text] [Related]

  • 9. Determination of glucose concentrations in an aqueous matrix from NIR spectra using optimal time-domain filtering and partial least-squares regression.
    Ham FM, Kostanic IN, Cohen GM, Gooch BR.
    IEEE Trans Biomed Eng; 1997 Jun 01; 44(6):475-85. PubMed ID: 9151481
    [Abstract] [Full Text] [Related]

  • 10. Evaluation of visible and near-infrared spectroscopy as a tool for assessing fiber fineness during mechanical preparation of dew-retted flax.
    Sharma HS, Reinard N.
    Appl Spectrosc; 2004 Dec 01; 58(12):1431-8. PubMed ID: 15606956
    [Abstract] [Full Text] [Related]

  • 11. Comparison of the HPLC method and FT-NIR analysis for quantification of glucose, fructose, and sucrose in intact apple fruits.
    Liu Y, Ying Y, Yu H, Fu X.
    J Agric Food Chem; 2006 Apr 19; 54(8):2810-5. PubMed ID: 16608193
    [Abstract] [Full Text] [Related]

  • 12. Glucose and fructose hydrates in aqueous solution by IR spectroscopy.
    Max JJ, Chapados C.
    J Phys Chem A; 2007 Apr 12; 111(14):2679-89. PubMed ID: 17388373
    [Abstract] [Full Text] [Related]

  • 13. Sugar interaction with metals in aqueous solution: indirect determination from infrared and direct determination from nuclear magnetic resonance spectroscopy.
    Rondeau P, Sers S, Jhurry D, Cadet F.
    Appl Spectrosc; 2003 Apr 12; 57(4):466-72. PubMed ID: 14658645
    [Abstract] [Full Text] [Related]

  • 14. [Water in wood and its near infrared spectroscopic analysis].
    Jiang ZH, Huang AM.
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Aug 12; 26(8):1464-8. PubMed ID: 17058947
    [Abstract] [Full Text] [Related]

  • 15. Carbohydrate analysis of floral nectar using medium infrared.
    Ortiz CM, Castro IP, Portilla LB, Aranda PD, Arizmendi Mdel C.
    Phytochem Anal; 2003 Aug 12; 14(5):319-24. PubMed ID: 14516006
    [Abstract] [Full Text] [Related]

  • 16. Near-infrared studies of glucose and sucrose in aqueous solutions: water displacement effect and red shift in water absorption from water-solute interaction.
    Jung Y, Hwang J.
    Appl Spectrosc; 2013 Feb 12; 67(2):171-80. PubMed ID: 23622436
    [Abstract] [Full Text] [Related]

  • 17. EPR and UV spectral study of gamma-irradiated white and burned sugar, fructose and glucose.
    Yordanov ND, Georgieva E.
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 May 12; 60(6):1307-14. PubMed ID: 15134728
    [Abstract] [Full Text] [Related]

  • 18. [Simultaneous determination of glucose, fructose and sucrose in aqueous solution by short-wavelength near infrared spectroscopy].
    Rao ZH, Li MZ, Ji HY.
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Apr 12; 26(4):633-5. PubMed ID: 16836126
    [Abstract] [Full Text] [Related]

  • 19. Quality evaluation of sugar beet (Beta vulgaris) by near-infrared spectroscopy.
    Roggo Y, Duponchel L, Huvenne JP.
    J Agric Food Chem; 2004 Mar 10; 52(5):1055-61. PubMed ID: 14995097
    [Abstract] [Full Text] [Related]

  • 20. Improving prediction selectivity for on-line near-infrared monitoring of components in etchant solution by spectral range optimization.
    Namkung H, Lee Y, Chung H.
    Anal Chim Acta; 2008 Jan 07; 606(1):50-6. PubMed ID: 18068770
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.