These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


383 related items for PubMed ID: 16241462

  • 1. Pattern-forming instabilities in nematic liquid crystals under oscillatory Couette flow.
    Tarasov OS, Krekhov AP, Kramer L.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 1):031709. PubMed ID: 16241462
    [Abstract] [Full Text] [Related]

  • 2. Orientational instabilities in nematic liquid crystals with weak anchoring under combined action of steady flow and external fields.
    Nasibullayev ISh, Tarasov OS, Krekhov AP, Kramer L.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 1):051706. PubMed ID: 16383619
    [Abstract] [Full Text] [Related]

  • 3. Flexoelectric instability and a spontaneous chiral-symmetry breaking in a nematic liquid crystal cell with asymmetric boundary conditions.
    Palto SP, Mottram NJ, Osipov MA.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 1):061707. PubMed ID: 17677283
    [Abstract] [Full Text] [Related]

  • 4. Temperature effects on capillary instabilities in a thin nematic liquid crystalline fiber embedded in a viscous matrix.
    Cheong AG, Rey AD.
    Eur Phys J E Soft Matter; 2002 Oct; 9(2):171-93. PubMed ID: 15015115
    [Abstract] [Full Text] [Related]

  • 5. Passive manipulation of free-surface instability by deformable solid bilayers.
    Sahu S, Shankar V.
    Phys Rev E; 2016 Jul; 94(1-1):013111. PubMed ID: 27575221
    [Abstract] [Full Text] [Related]

  • 6. Spatiotemporal complexity of electroconvection patterns in nematic liquid crystals.
    Krekhov A, Dressel B, Pesch W, Delev V, Batyrshin E.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062510. PubMed ID: 26764714
    [Abstract] [Full Text] [Related]

  • 7. Linear stability of a circular Couette flow under a radial thermoelectric body force.
    Yoshikawa HN, Meyer A, Crumeyrolle O, Mutabazi I.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033003. PubMed ID: 25871198
    [Abstract] [Full Text] [Related]

  • 8. Lattice Boltzmann simulation of asymmetric flow in nematic liquid crystals with finite anchoring.
    Zhang R, Roberts T, Aranson IS, de Pablo JJ.
    J Chem Phys; 2016 Feb 28; 144(8):084905. PubMed ID: 26931724
    [Abstract] [Full Text] [Related]

  • 9. Transient, polarity-dependent dielectric response in a twisted nematic liquid crystal under very low frequency excitation.
    Krishnamurthy KS.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep 28; 92(3):032504. PubMed ID: 26465487
    [Abstract] [Full Text] [Related]

  • 10. Standard and nonstandard nematic electrohydrodynamic convection in the presence of asymmetric ac electric fields.
    Low J, Hogan SJ.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct 28; 78(4 Pt 1):041706. PubMed ID: 18999444
    [Abstract] [Full Text] [Related]

  • 11. Intermediate periodic "saddle-splay" nematic phase in the vicinity of a nematic-smectic-A transition.
    Barbero G, Pergamenshchik VM.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov 28; 66(5 Pt 1):051706. PubMed ID: 12513502
    [Abstract] [Full Text] [Related]

  • 12. Electroconvection of pure nematic liquid crystals without free charge carriers.
    Lee KW, Pöschel T.
    Soft Matter; 2017 Nov 29; 13(46):8816-8823. PubMed ID: 29138786
    [Abstract] [Full Text] [Related]

  • 13. Analytical description of 2D magnetic Freedericksz transition in a rectangular cell of a nematic liquid crystal.
    Burylov SV, Zakhlevnykh AN.
    Eur Phys J E Soft Matter; 2016 Jun 29; 39(6):65. PubMed ID: 27349554
    [Abstract] [Full Text] [Related]

  • 14. Capillary instabilities in thin nematic liquid crystalline fibers.
    Cheong AG, Rey AD, Mather PT.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct 29; 64(4 Pt 1):041701. PubMed ID: 11690040
    [Abstract] [Full Text] [Related]

  • 15. Influence of shear flow on the Fréedericksz transition in nematic liquid crystals.
    Makarov DV, Zakhlevnykh AN.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct 29; 74(4 Pt 1):041710. PubMed ID: 17155081
    [Abstract] [Full Text] [Related]

  • 16. Effects of intramolecular dipolar coupling on the isotropic-nematic phase transition of a hard spherocylinder fluid.
    Williamson DC, Thacker NA, Williams SR.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb 29; 71(2 Pt 1):021702. PubMed ID: 15783335
    [Abstract] [Full Text] [Related]

  • 17. Pinch instabilities in Taylor-Couette flow.
    Shalybkov D.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan 29; 73(1 Pt 2):016302. PubMed ID: 16486272
    [Abstract] [Full Text] [Related]

  • 18. Electrorheological response and orientational bistability of a homogeneously aligned nematic capillary.
    Reyes JA, Corella-Madueño A, Mendoza CI.
    J Chem Phys; 2008 Aug 28; 129(8):084710. PubMed ID: 19044844
    [Abstract] [Full Text] [Related]

  • 19. Symmetry breaking and interaction of colloidal particles in nematic liquid crystals.
    Lev BI, Chernyshuk SB, Tomchuk PM, Yokoyama H.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb 28; 65(2 Pt 1):021709. PubMed ID: 11863547
    [Abstract] [Full Text] [Related]

  • 20. Assessing flow alignment of nematic liquid crystals through linear viscoelasticity.
    de Andrade Lima LR, Rey AD.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jul 28; 70(1 Pt 1):011701. PubMed ID: 15324066
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.