These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


237 related items for PubMed ID: 16243393

  • 1. The effect of structural alterations of PEG-fibrinogen hydrogel scaffolds on 3-D cellular morphology and cellular migration.
    Dikovsky D, Bianco-Peled H, Seliktar D.
    Biomaterials; 2006 Mar; 27(8):1496-506. PubMed ID: 16243393
    [Abstract] [Full Text] [Related]

  • 2. Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures.
    Almany L, Seliktar D.
    Biomaterials; 2005 May; 26(15):2467-77. PubMed ID: 15585249
    [Abstract] [Full Text] [Related]

  • 3. Protein-polymer conjugates for forming photopolymerizable biomimetic hydrogels for tissue engineering.
    Gonen-Wadmany M, Oss-Ronen L, Seliktar D.
    Biomaterials; 2007 Sep; 28(26):3876-86. PubMed ID: 17576008
    [Abstract] [Full Text] [Related]

  • 4. Covalently immobilized gradients of bFGF on hydrogel scaffolds for directed cell migration.
    DeLong SA, Moon JJ, West JL.
    Biomaterials; 2005 Jun; 26(16):3227-34. PubMed ID: 15603817
    [Abstract] [Full Text] [Related]

  • 5. Nanostructuring biosynthetic hydrogels for tissue engineering: a cellular and structural analysis.
    Frisman I, Seliktar D, Bianco-Peled H.
    Acta Biomater; 2012 Jan; 8(1):51-60. PubMed ID: 21855662
    [Abstract] [Full Text] [Related]

  • 6. Biological and mechanical implications of PEGylating proteins into hydrogel biomaterials.
    Gonen-Wadmany M, Goldshmid R, Seliktar D.
    Biomaterials; 2011 Sep; 32(26):6025-33. PubMed ID: 21669457
    [Abstract] [Full Text] [Related]

  • 7. Nanostructuring PEG-fibrinogen hydrogels to control cellular morphogenesis.
    Frisman I, Seliktar D, Bianco-Peled H.
    Biomaterials; 2011 Nov; 32(31):7839-46. PubMed ID: 21784517
    [Abstract] [Full Text] [Related]

  • 8. Nanostructuring of PEG-fibrinogen polymeric scaffolds.
    Frisman I, Seliktar D, Bianco-Peled H.
    Acta Biomater; 2010 Jul; 6(7):2518-24. PubMed ID: 19615475
    [Abstract] [Full Text] [Related]

  • 9. The influence of biological motifs and dynamic mechanical stimulation in hydrogel scaffold systems on the phenotype of chondrocytes.
    Appelman TP, Mizrahi J, Elisseeff JH, Seliktar D.
    Biomaterials; 2011 Feb; 32(6):1508-16. PubMed ID: 21093907
    [Abstract] [Full Text] [Related]

  • 10. Uncoupled investigation of scaffold modulus and mesh size on smooth muscle cell behavior.
    Munoz-Pinto DJ, Bulick AS, Hahn MS.
    J Biomed Mater Res A; 2009 Jul; 90(1):303-16. PubMed ID: 19402139
    [Abstract] [Full Text] [Related]

  • 11. Polymer-conjugated albumin and fibrinogen composite hydrogels as cell scaffolds designed for affinity-based drug delivery.
    Oss-Ronen L, Seliktar D.
    Acta Biomater; 2011 Jan; 7(1):163-70. PubMed ID: 20643230
    [Abstract] [Full Text] [Related]

  • 12. The biocompatibility of PluronicF127 fibrinogen-based hydrogels.
    Shachaf Y, Gonen-Wadmany M, Seliktar D.
    Biomaterials; 2010 Apr; 31(10):2836-47. PubMed ID: 20092890
    [Abstract] [Full Text] [Related]

  • 13. The effect of enzymatically degradable poly(ethylene glycol) hydrogels on smooth muscle cell phenotype.
    Adelöw C, Segura T, Hubbell JA, Frey P.
    Biomaterials; 2008 Jan; 29(3):314-26. PubMed ID: 17953986
    [Abstract] [Full Text] [Related]

  • 14. Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds.
    Arcaute K, Mann B, Wicker R.
    Acta Biomater; 2010 Mar; 6(3):1047-54. PubMed ID: 19683602
    [Abstract] [Full Text] [Related]

  • 15. The role of matrix metalloproteinases in regulating neuronal and nonneuronal cell invasion into PEGylated fibrinogen hydrogels.
    Sarig-Nadir O, Seliktar D.
    Biomaterials; 2010 Sep; 31(25):6411-6. PubMed ID: 20537384
    [Abstract] [Full Text] [Related]

  • 16. Influence of soluble PEG-OH incorporation in a 3D cell-laden PEG-fibrinogen (PF) hydrogel on smooth muscle cell morphology and growth.
    Lee BH, Tin SP, Chaw SY, Cao Y, Xia Y, Steele TW, Seliktar D, Bianco-Peled H, Venkatraman SS.
    J Biomater Sci Polym Ed; 2014 Sep; 25(4):394-409. PubMed ID: 24304216
    [Abstract] [Full Text] [Related]

  • 17. Matrix stiffness affects spontaneous contraction of cardiomyocytes cultured within a PEGylated fibrinogen biomaterial.
    Shapira-Schweitzer K, Seliktar D.
    Acta Biomater; 2007 Jan; 3(1):33-41. PubMed ID: 17098488
    [Abstract] [Full Text] [Related]

  • 18. Development of porous PEG hydrogels that enable efficient, uniform cell-seeding and permit early neural process extension.
    Namba RM, Cole AA, Bjugstad KB, Mahoney MJ.
    Acta Biomater; 2009 Jul; 5(6):1884-97. PubMed ID: 19250891
    [Abstract] [Full Text] [Related]

  • 19. Recombinant protein-co-PEG networks as cell-adhesive and proteolytically degradable hydrogel matrixes. Part II: biofunctional characteristics.
    Rizzi SC, Ehrbar M, Halstenberg S, Raeber GP, Schmoekel HG, Hagenmüller H, Müller R, Weber FE, Hubbell JA.
    Biomacromolecules; 2006 Nov; 7(11):3019-29. PubMed ID: 17096527
    [Abstract] [Full Text] [Related]

  • 20. The differential effect of scaffold composition and architecture on chondrocyte response to mechanical stimulation.
    Appelman TP, Mizrahi J, Elisseeff JH, Seliktar D.
    Biomaterials; 2009 Feb; 30(4):518-25. PubMed ID: 19000634
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.