These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


432 related items for PubMed ID: 16245298

  • 21. Simple, intuitive calculations of free energy of binding for protein-ligand complexes. 3. The free energy contribution of structural water molecules in HIV-1 protease complexes.
    Fornabaio M, Spyrakis F, Mozzarelli A, Cozzini P, Abraham DJ, Kellogg GE.
    J Med Chem; 2004 Aug 26; 47(18):4507-16. PubMed ID: 15317462
    [Abstract] [Full Text] [Related]

  • 22. Identification, synthesis, and characterization of new glycogen phosphorylase inhibitors binding to the allosteric AMP site.
    Kristiansen M, Andersen B, Iversen LF, Westergaard N.
    J Med Chem; 2004 Jul 01; 47(14):3537-45. PubMed ID: 15214781
    [Abstract] [Full Text] [Related]

  • 23. Mechanism of the hydration of carbon dioxide: direct participation of H2O versus microsolvation.
    Nguyen MT, Matus MH, Jackson VE, Vu TN, Rustad JR, Dixon DA.
    J Phys Chem A; 2008 Oct 16; 112(41):10386-98. PubMed ID: 18816037
    [Abstract] [Full Text] [Related]

  • 24. The σ-hole phenomenon of halogen atoms forms the structural basis of the strong inhibitory potency of C5 halogen substituted glucopyranosyl nucleosides towards glycogen phosphorylase b.
    Kantsadi AL, Hayes JM, Manta S, Skamnaki VT, Kiritsis C, Psarra AM, Koutsogiannis Z, Dimopoulou A, Theofanous S, Nikoleousakos N, Zoumpoulakis P, Kontou M, Papadopoulos G, Zographos SE, Komiotis D, Leonidas DD.
    ChemMedChem; 2012 Apr 16; 7(4):722-32. PubMed ID: 22267166
    [Abstract] [Full Text] [Related]

  • 25. Novel mechanism-based substrates of dihydrofolate reductase and the thermodynamics of ligand binding: a comparison of theory and experiment for 8-methylpterin and 6,8-dimethylpterin.
    Cummins PL, Gready JE.
    Proteins; 1993 Apr 16; 15(4):426-35. PubMed ID: 8460112
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Role of structural water molecule in HIV protease-inhibitor complexes: a QM/MM study.
    Suresh CH, Vargheese AM, Vijayalakshmi KP, Mohan N, Koga N.
    J Comput Chem; 2008 Aug 16; 29(11):1840-9. PubMed ID: 18351589
    [Abstract] [Full Text] [Related]

  • 28. The effect of water displacement on binding thermodynamics: concanavalin A.
    Li Z, Lazaridis T.
    J Phys Chem B; 2005 Jan 13; 109(1):662-70. PubMed ID: 16851059
    [Abstract] [Full Text] [Related]

  • 29. Comparative molecular dynamics simulations of histone deacetylase-like protein: binding modes and free energy analysis to hydroxamic acid inhibitors.
    Yan C, Xiu Z, Li X, Li S, Hao C, Teng H.
    Proteins; 2008 Oct 13; 73(1):134-49. PubMed ID: 18398905
    [Abstract] [Full Text] [Related]

  • 30. Discovering benzamide derivatives as glycogen phosphorylase inhibitors and their binding site at the enzyme.
    Chen L, Li H, Liu J, Zhang L, Liu H, Jiang H.
    Bioorg Med Chem; 2007 Nov 01; 15(21):6763-74. PubMed ID: 17719791
    [Abstract] [Full Text] [Related]

  • 31. Standard free energy of releasing a localized water molecule from the binding pockets of proteins: double-decoupling method.
    Hamelberg D, McCammon JA.
    J Am Chem Soc; 2004 Jun 23; 126(24):7683-9. PubMed ID: 15198616
    [Abstract] [Full Text] [Related]

  • 32. Allosteric inhibition of glycogen phosphorylase a by the potential antidiabetic drug 3-isopropyl 4-(2-chlorophenyl)-1,4-dihydro-1-ethyl-2-methyl-pyridine-3,5,6-tricarbo xylate.
    Oikonomakos NG, Tsitsanou KE, Zographos SE, Skamnaki VT, Goldmann S, Bischoff H.
    Protein Sci; 1999 Oct 23; 8(10):1930-45. PubMed ID: 10548038
    [Abstract] [Full Text] [Related]

  • 33. Site specific point mutation changes specificity: a molecular modeling study by free energy simulations and enzyme kinetics of the thermodynamics in ribonuclease T1 substrate interactions.
    Elofsson A, Kulinski T, Rigler R, Nilsson L.
    Proteins; 1993 Oct 23; 17(2):161-75. PubMed ID: 8265564
    [Abstract] [Full Text] [Related]

  • 34. Glycogen phosphorylase as a molecular target for type 2 diabetes therapy.
    Oikonomakos NG.
    Curr Protein Pept Sci; 2002 Dec 23; 3(6):561-86. PubMed ID: 12470212
    [Abstract] [Full Text] [Related]

  • 35. Theoretical study of Escherichia coli peptide deformylase inhibition by several drugs.
    Chikhi A, Bensegueni A, Boulahrouf A, Bencharif M.
    In Silico Biol; 2006 Dec 23; 6(5):459-66. PubMed ID: 17274774
    [Abstract] [Full Text] [Related]

  • 36. Binding of beta-D-glucopyranosyl bismethoxyphosphoramidate to glycogen phosphorylase b: kinetic and crystallographic studies.
    Chrysina ED, Kosmopoulou MN, Kardakaris R, Bischler N, Leonidas DD, Kannan T, Loganathan D, Oikonomakos NG.
    Bioorg Med Chem; 2005 Feb 01; 13(3):765-72. PubMed ID: 15653344
    [Abstract] [Full Text] [Related]

  • 37. Binding of antifusion peptides with HIVgp41 from molecular dynamics simulations: quantitative correlation with experiment.
    Strockbine B, Rizzo RC.
    Proteins; 2007 May 15; 67(3):630-42. PubMed ID: 17335007
    [Abstract] [Full Text] [Related]

  • 38. Crystallographic studies on two bioisosteric analogues, N-acetyl-beta-D-glucopyranosylamine and N-trifluoroacetyl-beta-D-glucopyranosylamine, potent inhibitors of muscle glycogen phosphorylase.
    Anagnostou E, Kosmopoulou MN, Chrysina ED, Leonidas DD, Hadjiloi T, Tiraidis C, Zographos SE, Györgydeák Z, Somsák L, Docsa T, Gergely P, Kolisis FN, Oikonomakos NG.
    Bioorg Med Chem; 2006 Jan 01; 14(1):181-9. PubMed ID: 16213146
    [Abstract] [Full Text] [Related]

  • 39. Energy of binding of Aspergillus oryzae beta-glucosidase with the substrate, and the mechanism of its enzymic action.
    Mega T, Matsushima Y.
    J Biochem; 1983 Nov 01; 94(5):1637-47. PubMed ID: 6418735
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 22.