These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
139 related items for PubMed ID: 16256645
21. Importance of structural and chemical heterogeneity of activated carbon surfaces for adsorption of dibenzothiophene. Ania CO, Bandosz TJ. Langmuir; 2005 Aug 16; 21(17):7752-9. PubMed ID: 16089380 [Abstract] [Full Text] [Related]
22. Enhanced adsorption of phenolic compounds, commonly encountered in olive mill wastewaters, on olive husk derived activated carbons. Michailof C, Stavropoulos GG, Panayiotou C. Bioresour Technol; 2008 Sep 16; 99(14):6400-8. PubMed ID: 18178430 [Abstract] [Full Text] [Related]
23. Oxidative coupling and the irreversible adsorption of phenol by graphite. de Oliveira Pimenta AC, Kilduff JE. J Colloid Interface Sci; 2006 Jan 15; 293(2):278-89. PubMed ID: 16054157 [Abstract] [Full Text] [Related]
24. Adsorption of sodium dodecylbenzenesulfonate on activated carbons: effects of solution chemistry and presence of bacteria. Bautista-Toledo MI, Méndez-Díaz JD, Sánchez-Polo M, Rivera-Utrilla J, Ferro-García MA. J Colloid Interface Sci; 2008 Jan 01; 317(1):11-7. PubMed ID: 17936293 [Abstract] [Full Text] [Related]
25. Interactions of 4,6-dimethyldibenzothiophene with the surface of activated carbons. Deliyanni E, Seredych M, Bandosz TJ. Langmuir; 2009 Aug 18; 25(16):9302-12. PubMed ID: 19719225 [Abstract] [Full Text] [Related]
26. Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation. Altenor S, Carene B, Emmanuel E, Lambert J, Ehrhardt JJ, Gaspard S. J Hazard Mater; 2009 Jun 15; 165(1-3):1029-39. PubMed ID: 19118948 [Abstract] [Full Text] [Related]
27. Enhanced adsorption of phenol from water by ammonia-treated activated carbon. Przepiórski J. J Hazard Mater; 2006 Jul 31; 135(1-3):453-6. PubMed ID: 16439059 [Abstract] [Full Text] [Related]
28. Molecular dynamics simulation insight into the mechanism of phenol adsorption at low coverages from aqueous solutions on microporous carbons. Terzyk AP, Gauden PA, Furmaniak S, Wesołowski RP, Harris PJ. Phys Chem Chem Phys; 2010 Jan 28; 12(4):812-7. PubMed ID: 20066365 [Abstract] [Full Text] [Related]
29. The effect of the physical and chemical characteristics of activated carbons on the adsorption energy and affinity coefficient of Dubinin equation. Dastgheib SA, Karanfil T. J Colloid Interface Sci; 2005 Dec 15; 292(2):312-21. PubMed ID: 15979630 [Abstract] [Full Text] [Related]
30. Heavy metal and phenol adsorptive properties of biochars from pyrolyzed switchgrass and woody biomass in correlation with surface properties. Han Y, Boateng AA, Qi PX, Lima IM, Chang J. J Environ Manage; 2013 Mar 30; 118():196-204. PubMed ID: 23454371 [Abstract] [Full Text] [Related]
31. Activated carbons prepared from wood particleboard wastes: characterisation and phenol adsorption capacities. Girods P, Dufour A, Fierro V, Rogaume Y, Rogaume C, Zoulalian A, Celzard A. J Hazard Mater; 2009 Jul 15; 166(1):491-501. PubMed ID: 19128878 [Abstract] [Full Text] [Related]
32. Molecular properties and intermolecular forces--factors balancing the effect of carbon surface chemistry in adsorption of organics from dilute aqueous solutions. Terzyk AP. J Colloid Interface Sci; 2004 Jul 01; 275(1):9-29. PubMed ID: 15158374 [Abstract] [Full Text] [Related]
33. Surface properties of SAC and its adsorption mechanisms for phenol and nitrobenzene. Li D, Wu Y, Feng L, Zhang L. Bioresour Technol; 2012 Jun 01; 113():121-6. PubMed ID: 22446048 [Abstract] [Full Text] [Related]
34. Preparation and characterization of highly mesoporous spherical activated carbons from divinylbenzene-derived polymer by ZnCl(2) activation. Zhu Z, Li A, Yan L, Liu F, Zhang Q. J Colloid Interface Sci; 2007 Dec 15; 316(2):628-34. PubMed ID: 17904151 [Abstract] [Full Text] [Related]
35. Effect of the carbon surface layer chemistry on benzene adsorption from the vapor phase and from dilute aqueous solutions. Terzyk AP, Rychlicki G, Cwiertnia MS, Gauden PA, Kowalczyk P. Langmuir; 2005 Dec 20; 21(26):12257-67. PubMed ID: 16343001 [Abstract] [Full Text] [Related]
36. Complexity of ammonia interactions on activated carbons modified with V2O5. Petit C, Bandosz TJ. J Colloid Interface Sci; 2008 Sep 15; 325(2):301-8. PubMed ID: 18571660 [Abstract] [Full Text] [Related]
37. Chemical modification of carbonized wheat and barley straw using HNO3 and the adsorption of Cr(III). Chand R, Watari T, Inoue K, Luitel HN, Torikai T, Yada M. J Hazard Mater; 2009 Aug 15; 167(1-3):319-24. PubMed ID: 19185999 [Abstract] [Full Text] [Related]
38. The role of surface chemistry and solution pH on the removal of Pb2+ and Cd2+ ions via effective adsorbents from low-cost biomass. El-Hendawy AN. J Hazard Mater; 2009 Aug 15; 167(1-3):260-7. PubMed ID: 19195774 [Abstract] [Full Text] [Related]
39. Interaction of phenol and dopamine with commercial MWCNTs. Tóth A, Törocsik A, Tombácz E, Oláh E, Heggen M, Li C, Klumpp E, Geissler E, László K. J Colloid Interface Sci; 2011 Dec 15; 364(2):469-75. PubMed ID: 21930280 [Abstract] [Full Text] [Related]
40. Effect of surface acidic oxides of activated carbon on adsorption of ammonia. Huang CC, Li HS, Chen CH. J Hazard Mater; 2008 Nov 30; 159(2-3):523-7. PubMed ID: 18403110 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]