These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


203 related items for PubMed ID: 16256968

  • 1. Functional requirements for the optimal catalytic configuration of the AChE active center.
    Shafferman A, Barak D, Kaplan D, Ordentlich A, Kronman C, Velan B.
    Chem Biol Interact; 2005 Dec 15; 157-158():123-31. PubMed ID: 16256968
    [Abstract] [Full Text] [Related]

  • 2. Is aromaticity essential for trapping the catalytic histidine 447 in human acetylcholinesterase?
    Kaplan D, Barak D, Ordentlich A, Kronman C, Velan B, Shafferman A.
    Biochemistry; 2004 Mar 23; 43(11):3129-36. PubMed ID: 15023064
    [Abstract] [Full Text] [Related]

  • 3. The aromatic "trapping" of the catalytic histidine is essential for efficient catalysis in acetylcholinesterase.
    Barak D, Kaplan D, Ordentlich A, Ariel N, Velan B, Shafferman A.
    Biochemistry; 2002 Jul 02; 41(26):8245-52. PubMed ID: 12081473
    [Abstract] [Full Text] [Related]

  • 4. Does "butyrylization" of acetylcholinesterase through substitution of the six divergent aromatic amino acids in the active center gorge generate an enzyme mimic of butyrylcholinesterase?
    Kaplan D, Ordentlich A, Barak D, Ariel N, Kronman C, Velan B, Shafferman A.
    Biochemistry; 2001 Jun 26; 40(25):7433-45. PubMed ID: 11412096
    [Abstract] [Full Text] [Related]

  • 5. Exploring the active center of human acetylcholinesterase with stereomers of an organophosphorus inhibitor with two chiral centers.
    Ordentlich A, Barak D, Kronman C, Benschop HP, De Jong LP, Ariel N, Barak R, Segall Y, Velan B, Shafferman A.
    Biochemistry; 1999 Mar 09; 38(10):3055-66. PubMed ID: 10074358
    [Abstract] [Full Text] [Related]

  • 6. Lessons from functional analysis of AChE covalent and noncovalent inhibitors for design of AD therapeutic agents.
    Barak D, Ordentlich A, Kaplan D, Kronman C, Velan B, Shafferman A.
    Chem Biol Interact; 2005 Dec 15; 157-158():219-26. PubMed ID: 16289124
    [Abstract] [Full Text] [Related]

  • 7. Acetylcholinesterase: mechanisms of covalent inhibition of wild-type and H447I mutant determined by computational analyses.
    Cheng Y, Cheng X, Radić Z, McCammon JA.
    J Am Chem Soc; 2007 May 23; 129(20):6562-70. PubMed ID: 17461584
    [Abstract] [Full Text] [Related]

  • 8. Unmasking tandem site interaction in human acetylcholinesterase. Substrate activation with a cationic acetanilide substrate.
    Johnson JL, Cusack B, Davies MP, Fauq A, Rosenberry TL.
    Biochemistry; 2003 May 13; 42(18):5438-52. PubMed ID: 12731886
    [Abstract] [Full Text] [Related]

  • 9. Structural changes of phenylalanine 338 and histidine 447 revealed by the crystal structures of tabun-inhibited murine acetylcholinesterase.
    Ekström F, Akfur C, Tunemalm AK, Lundberg S.
    Biochemistry; 2006 Jan 10; 45(1):74-81. PubMed ID: 16388582
    [Abstract] [Full Text] [Related]

  • 10. Role of tyrosine 337 in the binding of huperzine A to the active site of human acetylcholinesterase.
    Ashani Y, Grunwald J, Kronman C, Velan B, Shafferman A.
    Mol Pharmacol; 1994 Mar 10; 45(3):555-60. PubMed ID: 8145739
    [Abstract] [Full Text] [Related]

  • 11. Mutant cholinesterases possessing enhanced capacity for reactivation of their phosphonylated conjugates.
    Kovarik Z, Radić Z, Berman HA, Simeon-Rudolf V, Reiner E, Taylor P.
    Biochemistry; 2004 Mar 23; 43(11):3222-9. PubMed ID: 15023072
    [Abstract] [Full Text] [Related]

  • 12. Amino acid residues involved in stereoselective inhibition of cholinesterases with bambuterol.
    Bosak A, Gazić I, Vinković V, Kovarik Z.
    Arch Biochem Biophys; 2008 Mar 01; 471(1):72-6. PubMed ID: 18167304
    [Abstract] [Full Text] [Related]

  • 13. Aging of phosphylated human acetylcholinesterase: catalytic processes mediated by aromatic and polar residues of the active centre.
    Shafferman A, Ordentlich A, Barak D, Stein D, Ariel N, Velan B.
    Biochem J; 1996 Sep 15; 318 ( Pt 3)(Pt 3):833-40. PubMed ID: 8836126
    [Abstract] [Full Text] [Related]

  • 14. Interactions between the peripheral site and the acylation site in acetylcholinesterase.
    Rosenberry TL, Johnson JL, Cusack B, Thomas JL, Emani S, Venkatasubban KS.
    Chem Biol Interact; 2005 Dec 15; 157-158():181-9. PubMed ID: 16256966
    [Abstract] [Full Text] [Related]

  • 15. The role of AChE active site gorge in determining stereoselectivity of charged and noncharged VX enantiomers.
    Ordentlich A, Barak D, Sod-Moriah G, Kaplan D, Mizrahi D, Segall Y, Kronman C, Karton Y, Lazar A, Marcus D, Velan B, Shafferman A.
    Chem Biol Interact; 2005 Dec 15; 157-158():191-8. PubMed ID: 16289014
    [Abstract] [Full Text] [Related]

  • 16. Substrate binding to the peripheral site of acetylcholinesterase initiates enzymatic catalysis. Substrate inhibition arises as a secondary effect.
    Szegletes T, Mallender WD, Thomas PJ, Rosenberry TL.
    Biochemistry; 1999 Jan 05; 38(1):122-33. PubMed ID: 9890890
    [Abstract] [Full Text] [Related]

  • 17. Perturbations to the active site of phosphotriesterase.
    Kuo JM, Chae MY, Raushel FM.
    Biochemistry; 1997 Feb 25; 36(8):1982-8. PubMed ID: 9047295
    [Abstract] [Full Text] [Related]

  • 18. Binding of inhibitory aromatic amino acids to Streptomyces griseus aminopeptidase.
    Reiland V, Gilboa R, Spungin-Bialik A, Schomburg D, Shoham Y, Blumberg S, Shoham G.
    Acta Crystallogr D Biol Crystallogr; 2004 Oct 25; 60(Pt 10):1738-46. PubMed ID: 15388919
    [Abstract] [Full Text] [Related]

  • 19. Acetylcholinesterase active centre and gorge conformations analysed by combinatorial mutations and enantiomeric phosphonates.
    Kovarik Z, Radić Z, Berman HA, Simeon-Rudolf V, Reiner E, Taylor P.
    Biochem J; 2003 Jul 01; 373(Pt 1):33-40. PubMed ID: 12665427
    [Abstract] [Full Text] [Related]

  • 20. Mutational and structural studies of the diisopropylfluorophosphatase from Loligo vulgaris shed new light on the catalytic mechanism of the enzyme.
    Katsemi V, Lücke C, Koepke J, Löhr F, Maurer S, Fritzsch G, Rüterjans H.
    Biochemistry; 2005 Jun 28; 44(25):9022-33. PubMed ID: 15966726
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.