These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


291 related items for PubMed ID: 16257397

  • 1. The C-terminal peptides of acetylcholinesterase: cellular trafficking, oligomerization and functional anchoring.
    Massoulié J, Bon S, Perrier N, Falasca C.
    Chem Biol Interact; 2005 Dec 15; 157-158():3-14. PubMed ID: 16257397
    [Abstract] [Full Text] [Related]

  • 2. Respective roles of the catalytic domains and C-terminal tail peptides in the oligomerization and secretory trafficking of human acetylcholinesterase and butyrylcholinesterase.
    Liang D, Blouet JP, Borrega F, Bon S, Massoulié J.
    FEBS J; 2009 Jan 15; 276(1):94-108. PubMed ID: 19019080
    [Abstract] [Full Text] [Related]

  • 3. The origin of the molecular diversity and functional anchoring of cholinesterases.
    Massoulié J.
    Neurosignals; 2002 Jan 15; 11(3):130-43. PubMed ID: 12138250
    [Abstract] [Full Text] [Related]

  • 4. Elements of the C-terminal t peptide of acetylcholinesterase that determine amphiphilicity, homomeric and heteromeric associations, secretion and degradation.
    Belbeoc'h S, Falasca C, Leroy J, Ayon A, Massoulié J, Bon S.
    Eur J Biochem; 2004 Apr 15; 271(8):1476-87. PubMed ID: 15066173
    [Abstract] [Full Text] [Related]

  • 5. The polymorphism of acetylcholinesterase: post-translational processing, quaternary associations and localization.
    Massoulié J, Anselmet A, Bon S, Krejci E, Legay C, Morel N, Simon S.
    Chem Biol Interact; 1999 May 14; 119-120():29-42. PubMed ID: 10421436
    [Abstract] [Full Text] [Related]

  • 6. A four-to-one association between peptide motifs: four C-terminal domains from cholinesterase assemble with one proline-rich attachment domain (PRAD) in the secretory pathway.
    Simon S, Krejci E, Massoulié J.
    EMBO J; 1998 Nov 02; 17(21):6178-87. PubMed ID: 9799227
    [Abstract] [Full Text] [Related]

  • 7. Transcriptional control of different subunits of AChE in muscles: signals triggered by the motor nerve-derived factors.
    Tsim KW, Choi RC, Xie HQ, Zhu JT, Leung KW, Lau FT, Chu GK, Chen VP, Mok MK, Cheung AW, Bi CW.
    Chem Biol Interact; 2008 Sep 25; 175(1-3):58-63. PubMed ID: 18514177
    [Abstract] [Full Text] [Related]

  • 8. The association of tetrameric acetylcholinesterase with ColQ tail: a block normal mode analysis.
    Zhang D, McCammon JA.
    PLoS Comput Biol; 2005 Nov 25; 1(6):e62. PubMed ID: 16299589
    [Abstract] [Full Text] [Related]

  • 9. The readthrough variant of acetylcholinesterase remains very minor after heat shock, organophosphate inhibition and stress, in cell culture and in vivo.
    Perrier NA, Salani M, Falasca C, Bon S, Augusti-Tocco G, Massoulié J.
    J Neurochem; 2005 Aug 25; 94(3):629-38. PubMed ID: 16001972
    [Abstract] [Full Text] [Related]

  • 10. The C-terminal T peptide of acetylcholinesterase enhances degradation of unassembled active subunits through the ERAD pathway.
    Belbeoc'h S, Massoulié J, Bon S.
    EMBO J; 2003 Jul 15; 22(14):3536-45. PubMed ID: 12853469
    [Abstract] [Full Text] [Related]

  • 11. The intact human acetylcholinesterase C-terminal oligomerization domain is alpha-helical in situ and in isolation, but a shorter fragment forms beta-sheet-rich amyloid fibrils and protofibrillar oligomers.
    Cottingham MG, Voskuil JL, Vaux DJ.
    Biochemistry; 2003 Sep 16; 42(36):10863-73. PubMed ID: 12962511
    [Abstract] [Full Text] [Related]

  • 12. Determinants of the t peptide involved in folding, degradation, and secretion of acetylcholinesterase.
    Falasca C, Perrier N, Massoulié J, Bon S.
    J Biol Chem; 2005 Jan 14; 280(2):878-86. PubMed ID: 15452125
    [Abstract] [Full Text] [Related]

  • 13. Acetylcholinesterase (AChE) gene modification in transgenic animals: functional consequences of selected exon and regulatory region deletion.
    Camp S, Zhang L, Marquez M, de la Torre B, Long JM, Bucht G, Taylor P.
    Chem Biol Interact; 2005 Dec 15; 157-158():79-86. PubMed ID: 16289062
    [Abstract] [Full Text] [Related]

  • 14. PRiMA directs a restricted localization of tetrameric AChE at synapses.
    Xie HQ, Leung KW, Chen VP, Chan GK, Xu SL, Guo AJ, Zhu KY, Zheng KY, Bi CW, Zhan JY, Chan WK, Choi RC, Tsim KW.
    Chem Biol Interact; 2010 Sep 06; 187(1-3):78-83. PubMed ID: 20178777
    [Abstract] [Full Text] [Related]

  • 15. Transcriptional control of different acetylcholinesterase subunits in formation and maintenance of vertebrate neuromuscular junctions.
    Tsim KW, Xie HQ, Ting AK, Siow NL, Ling KK, Kong LW.
    J Mol Neurosci; 2006 Sep 06; 30(1-2):189-92. PubMed ID: 17192673
    [Abstract] [Full Text] [Related]

  • 16. [Acetylcholinesterase from snake venoms].
    Cousin X, Bon C.
    C R Seances Soc Biol Fil; 1997 Sep 06; 191(3):381-400. PubMed ID: 9295965
    [Abstract] [Full Text] [Related]

  • 17. N-linked glycosylation of proline-rich membrane anchor (PRiMA) is not required for assembly and trafficking of globular tetrameric acetylcholinesterase.
    Chan WK, Chen VP, Luk WK, Choi RC, Tsim KW.
    Neurosci Lett; 2012 Aug 08; 523(1):71-5. PubMed ID: 22750213
    [Abstract] [Full Text] [Related]

  • 18. Remodeling of the neuromuscular junction in mice with deleted exons 5 and 6 of acetylcholinesterase.
    Girard E, Bernard V, Camp S, Taylor P, Krejci E, Molgó J.
    J Mol Neurosci; 2006 Aug 08; 30(1-2):99-100. PubMed ID: 17192646
    [Abstract] [Full Text] [Related]

  • 19. Cholinesterases regulation in the absence of ColQ.
    Sigoillot SM, Bourgeois F, Legay C.
    Chem Biol Interact; 2010 Sep 06; 187(1-3):84-9. PubMed ID: 20153305
    [Abstract] [Full Text] [Related]

  • 20. Acetylcholinesterase from snake venom as a model for its nerve and muscle counterpart.
    Cousin X, Bon C.
    J Nat Toxins; 1999 Jun 06; 8(2):285-94. PubMed ID: 10410339
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.