These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
328 related items for PubMed ID: 16257397
1. The C-terminal peptides of acetylcholinesterase: cellular trafficking, oligomerization and functional anchoring. Massoulié J, Bon S, Perrier N, Falasca C. Chem Biol Interact; 2005 Dec 15; 157-158():3-14. PubMed ID: 16257397 [Abstract] [Full Text] [Related]
2. Respective roles of the catalytic domains and C-terminal tail peptides in the oligomerization and secretory trafficking of human acetylcholinesterase and butyrylcholinesterase. Liang D, Blouet JP, Borrega F, Bon S, Massoulié J. FEBS J; 2009 Jan 15; 276(1):94-108. PubMed ID: 19019080 [Abstract] [Full Text] [Related]
3. The origin of the molecular diversity and functional anchoring of cholinesterases. Massoulié J. Neurosignals; 2002 Jan 15; 11(3):130-43. PubMed ID: 12138250 [Abstract] [Full Text] [Related]
4. Elements of the C-terminal t peptide of acetylcholinesterase that determine amphiphilicity, homomeric and heteromeric associations, secretion and degradation. Belbeoc'h S, Falasca C, Leroy J, Ayon A, Massoulié J, Bon S. Eur J Biochem; 2004 Apr 15; 271(8):1476-87. PubMed ID: 15066173 [Abstract] [Full Text] [Related]
5. The polymorphism of acetylcholinesterase: post-translational processing, quaternary associations and localization. Massoulié J, Anselmet A, Bon S, Krejci E, Legay C, Morel N, Simon S. Chem Biol Interact; 1999 May 14; 119-120():29-42. PubMed ID: 10421436 [Abstract] [Full Text] [Related]
6. A four-to-one association between peptide motifs: four C-terminal domains from cholinesterase assemble with one proline-rich attachment domain (PRAD) in the secretory pathway. Simon S, Krejci E, Massoulié J. EMBO J; 1998 Nov 02; 17(21):6178-87. PubMed ID: 9799227 [Abstract] [Full Text] [Related]
8. The association of tetrameric acetylcholinesterase with ColQ tail: a block normal mode analysis. Zhang D, McCammon JA. PLoS Comput Biol; 2005 Nov 02; 1(6):e62. PubMed ID: 16299589 [Abstract] [Full Text] [Related]
9. The readthrough variant of acetylcholinesterase remains very minor after heat shock, organophosphate inhibition and stress, in cell culture and in vivo. Perrier NA, Salani M, Falasca C, Bon S, Augusti-Tocco G, Massoulié J. J Neurochem; 2005 Aug 02; 94(3):629-38. PubMed ID: 16001972 [Abstract] [Full Text] [Related]
10. The C-terminal T peptide of acetylcholinesterase enhances degradation of unassembled active subunits through the ERAD pathway. Belbeoc'h S, Massoulié J, Bon S. EMBO J; 2003 Jul 15; 22(14):3536-45. PubMed ID: 12853469 [Abstract] [Full Text] [Related]
11. The intact human acetylcholinesterase C-terminal oligomerization domain is alpha-helical in situ and in isolation, but a shorter fragment forms beta-sheet-rich amyloid fibrils and protofibrillar oligomers. Cottingham MG, Voskuil JL, Vaux DJ. Biochemistry; 2003 Sep 16; 42(36):10863-73. PubMed ID: 12962511 [Abstract] [Full Text] [Related]
12. Determinants of the t peptide involved in folding, degradation, and secretion of acetylcholinesterase. Falasca C, Perrier N, Massoulié J, Bon S. J Biol Chem; 2005 Jan 14; 280(2):878-86. PubMed ID: 15452125 [Abstract] [Full Text] [Related]
13. Acetylcholinesterase (AChE) gene modification in transgenic animals: functional consequences of selected exon and regulatory region deletion. Camp S, Zhang L, Marquez M, de la Torre B, Long JM, Bucht G, Taylor P. Chem Biol Interact; 2005 Dec 15; 157-158():79-86. PubMed ID: 16289062 [Abstract] [Full Text] [Related]