These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The free yeast aspartyl-tRNA synthetase differs from the tRNA(Asp)-complexed enzyme by structural changes in the catalytic site, hinge region, and anticodon-binding domain. Sauter C, Lorber B, Cavarelli J, Moras D, Giegé R. J Mol Biol; 2000 Jun 23; 299(5):1313-24. PubMed ID: 10873455 [Abstract] [Full Text] [Related]
4. Expanding tRNA recognition of a tRNA synthetase by a single amino acid change. Feng L, Tumbula-Hansen D, Toogood H, Soll D. Proc Natl Acad Sci U S A; 2003 May 13; 100(10):5676-81. PubMed ID: 12730374 [Abstract] [Full Text] [Related]
5. Identity of prokaryotic and eukaryotic tRNA(Asp) for aminoacylation by aspartyl-tRNA synthetase from Thermus thermophilus. Becker HD, Giegé R, Kern D. Biochemistry; 1996 Jun 11; 35(23):7447-58. PubMed ID: 8652522 [Abstract] [Full Text] [Related]
6. Yeast aspartyl-tRNA synthetase residues interacting with tRNA(Asp) identity bases connectively contribute to tRNA(Asp) binding in the ground and transition-state complex and discriminate against non-cognate tRNAs. Eriani G, Gangloff J. J Mol Biol; 1999 Aug 27; 291(4):761-73. PubMed ID: 10452887 [Abstract] [Full Text] [Related]
7. Structure of the nondiscriminating aspartyl-tRNA synthetase from the crenarchaeon Sulfolobus tokodaii strain 7 reveals the recognition mechanism for two different tRNA anticodons. Sato Y, Maeda Y, Shimizu S, Hossain MT, Ubukata S, Suzuki K, Sekiguchi T, Takénaka A. Acta Crystallogr D Biol Crystallogr; 2007 Oct 27; 63(Pt 10):1042-7. PubMed ID: 17881821 [Abstract] [Full Text] [Related]
8. Functional idiosyncrasies of tRNA isoacceptors in cognate and noncognate aminoacylation systems. Fender A, Sissler M, Florentz C, Giegé R. Biochimie; 2004 Jan 27; 86(1):21-9. PubMed ID: 14987797 [Abstract] [Full Text] [Related]
9. A domain in the N-terminal extension of class IIb eukaryotic aminoacyl-tRNA synthetases is important for tRNA binding. Frugier M, Moulinier L, Giegé R. EMBO J; 2000 May 15; 19(10):2371-80. PubMed ID: 10811628 [Abstract] [Full Text] [Related]
10. Major identity determinants for enzymatic formation of ribothymidine and pseudouridine in the T psi-loop of yeast tRNAs. Becker HF, Motorin Y, Sissler M, Florentz C, Grosjean H. J Mol Biol; 1997 Dec 12; 274(4):505-18. PubMed ID: 9417931 [Abstract] [Full Text] [Related]
11. Yeast aspartyl-tRNA synthetase binds specifically its own mRNA. Frugier M, Giegé R. J Mol Biol; 2003 Aug 08; 331(2):375-83. PubMed ID: 12888345 [Abstract] [Full Text] [Related]
12. Molecular dynamics simulations of cognate and non-cognate AspRS-tRNAAsp complexes. Ramakrishnan C, Nagarajan R, Sekijima M, Michael Gromiha M. J Biomol Struct Dyn; 2021 Feb 08; 39(2):493-501. PubMed ID: 31900102 [Abstract] [Full Text] [Related]
13. Identity elements for specific aminoacylation of a tRNA by mammalian lysyl-tRNA synthetase bearing a nonspecific tRNA-interacting factor. Francin M, Mirande M. Biochemistry; 2006 Aug 22; 45(33):10153-60. PubMed ID: 16906773 [Abstract] [Full Text] [Related]
14. Template-based structure prediction and molecular dynamics simulation study of two mammalian Aspartyl-tRNA synthetases. Ul-Haq Z, Khan W, Zarina S, Sattar R, Moin ST. J Mol Graph Model; 2010 Jan 22; 28(5):401-12. PubMed ID: 19896876 [Abstract] [Full Text] [Related]
15. Overproduction and purification of native and queuine-lacking Escherichia coli tRNA(Asp). Role of the wobble base in tRNA(Asp) acylation. Martin F, Eriani G, Eiler S, Moras D, Dirheimer G, Gangloff J. J Mol Biol; 1993 Dec 20; 234(4):965-74. PubMed ID: 8263943 [Abstract] [Full Text] [Related]
16. Specific amino acid recognition by aspartyl-tRNA synthetase studied by free energy simulations. Archontis G, Simonson T, Moras D, Karplus M. J Mol Biol; 1998 Feb 06; 275(5):823-46. PubMed ID: 9480772 [Abstract] [Full Text] [Related]
17. Binding free energies and free energy components from molecular dynamics and Poisson-Boltzmann calculations. Application to amino acid recognition by aspartyl-tRNA synthetase. Archontis G, Simonson T, Karplus M. J Mol Biol; 2001 Feb 16; 306(2):307-27. PubMed ID: 11237602 [Abstract] [Full Text] [Related]
18. tRNA-balanced expression of a eukaryal aminoacyl-tRNA synthetase by an mRNA-mediated pathway. Frugier M, Ryckelynck M, Giegé R. EMBO Rep; 2005 Sep 16; 6(9):860-5. PubMed ID: 16113655 [Abstract] [Full Text] [Related]
19. An intermediate step in the recognition of tRNA(Asp) by aspartyl-tRNA synthetase. Briand C, Poterszman A, Eiler S, Webster G, Thierry J, Moras D. J Mol Biol; 2000 Jun 16; 299(4):1051-60. PubMed ID: 10843857 [Abstract] [Full Text] [Related]
20. Two residues in the anticodon recognition domain of the aspartyl-tRNA synthetase from Pseudomonas aeruginosa are individually implicated in the recognition of tRNAAsn. Bernard D, Akochy PM, Beaulieu D, Lapointe J, Roy PH. J Bacteriol; 2006 Jan 16; 188(1):269-74. PubMed ID: 16352843 [Abstract] [Full Text] [Related] Page: [Next] [New Search]