These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


344 related items for PubMed ID: 16258959

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Development of an osteoconductive PCL-PDIPF-hydroxyapatite composite scaffold for bone tissue engineering.
    Fernandez JM, Molinuevo MS, Cortizo MS, Cortizo AM.
    J Tissue Eng Regen Med; 2011 Jun; 5(6):e126-35. PubMed ID: 21312338
    [Abstract] [Full Text] [Related]

  • 3. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration.
    Venugopal JR, Low S, Choon AT, Kumar AB, Ramakrishna S.
    Artif Organs; 2008 May; 32(5):388-97. PubMed ID: 18471168
    [Abstract] [Full Text] [Related]

  • 4. The influence of hydroxyapatite particles on in vitro degradation behavior of poly epsilon-caprolactone-based composite scaffolds.
    Guarino V, Taddei P, Di Foggia M, Fagnano C, Ciapetti G, Ambrosio L.
    Tissue Eng Part A; 2009 Nov; 15(11):3655-68. PubMed ID: 19496680
    [Abstract] [Full Text] [Related]

  • 5. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering.
    Wang J, Valmikinathan CM, Liu W, Laurencin CT, Yu X.
    J Biomed Mater Res A; 2010 May; 93(2):753-62. PubMed ID: 19642211
    [Abstract] [Full Text] [Related]

  • 6. Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro.
    Shor L, Güçeri S, Wen X, Gandhi M, Sun W.
    Biomaterials; 2007 Dec; 28(35):5291-7. PubMed ID: 17884162
    [Abstract] [Full Text] [Related]

  • 7. Coating nanothickness degradable films on nanocrystalline hydroxyapatite particles to improve the bonding strength between nanohydroxyapatite and degradable polymer matrix.
    Nichols HL, Zhang N, Zhang J, Shi D, Bhaduri S, Wen X.
    J Biomed Mater Res A; 2007 Aug; 82(2):373-82. PubMed ID: 17295227
    [Abstract] [Full Text] [Related]

  • 8. Polycaprolactone/hydroxyapatite composite scaffolds: preparation, characterization, and in vitro and in vivo biological responses of human primary bone cells.
    Chuenjitkuntaworn B, Inrung W, Damrongsri D, Mekaapiruk K, Supaphol P, Pavasant P.
    J Biomed Mater Res A; 2010 Jul; 94(1):241-51. PubMed ID: 20166220
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Effect of fluoridation of hydroxyapatite in hydroxyapatite-polycaprolactone composites on osteoblast activity.
    Kim HW, Lee EJ, Kim HE, Salih V, Knowles JC.
    Biomaterials; 2005 Jul; 26(21):4395-404. PubMed ID: 15701368
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Gel-derived bioglass as a compound of hydroxyapatite composites.
    Cholewa-Kowalska K, Kokoszka J, Laczka M, Niedźwiedzki L, Madej W, Osyczka AM.
    Biomed Mater; 2009 Oct; 4(5):055007. PubMed ID: 19779249
    [Abstract] [Full Text] [Related]

  • 13. Fabrication and characterization of novel nano- and micro-HA/PCL composite scaffolds using a modified rapid prototyping process.
    Heo SJ, Kim SE, Wei J, Hyun YT, Yun HS, Kim DH, Shin JW, Shin JW.
    J Biomed Mater Res A; 2009 Apr; 89(1):108-16. PubMed ID: 18431758
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering.
    Park SA, Lee SH, Kim WD.
    Bioprocess Biosyst Eng; 2011 May; 34(4):505-13. PubMed ID: 21170553
    [Abstract] [Full Text] [Related]

  • 16. Biodegradable poly(epsilon-caprolactone) nanowires for bone tissue engineering applications.
    Porter JR, Henson A, Popat KC.
    Biomaterials; 2009 Feb; 30(5):780-8. PubMed ID: 19012962
    [Abstract] [Full Text] [Related]

  • 17. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings.
    Zhao J, Lu X, Duan K, Guo LY, Zhou SB, Weng J.
    Colloids Surf B Biointerfaces; 2009 Nov 01; 74(1):159-66. PubMed ID: 19679453
    [Abstract] [Full Text] [Related]

  • 18. Electrospun-modified nanofibrous scaffolds for the mineralization of osteoblast cells.
    Venugopal J, Low S, Choon AT, Kumar AB, Ramakrishna S.
    J Biomed Mater Res A; 2008 May 01; 85(2):408-17. PubMed ID: 17701970
    [Abstract] [Full Text] [Related]

  • 19. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.
    Oliveira JM, Rodrigues MT, Silva SS, Malafaya PB, Gomes ME, Viegas CA, Dias IR, Azevedo JT, Mano JF, Reis RL.
    Biomaterials; 2006 Dec 01; 27(36):6123-37. PubMed ID: 16945410
    [Abstract] [Full Text] [Related]

  • 20. Compressive properties and degradability of poly(epsilon-caprolatone)/hydroxyapatite composites under accelerated hydrolytic degradation.
    Ang KC, Leong KF, Chua CK, Chandrasekaran M.
    J Biomed Mater Res A; 2007 Mar 01; 80(3):655-60. PubMed ID: 17051539
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.