These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Modeling the expenditure and reconstitution of work capacity above critical power. Skiba PF, Chidnok W, Vanhatalo A, Jones AM. Med Sci Sports Exerc; 2012 Aug; 44(8):1526-32. PubMed ID: 22382171 [Abstract] [Full Text] [Related]
5. Effects of pacing strategy on work done above critical power during high-intensity exercise. Chidnok W, Dimenna FJ, Bailey SJ, Wilkerson DP, Vanhatalo A, Jones AM. Med Sci Sports Exerc; 2013 Jul; 45(7):1377-85. PubMed ID: 23377832 [Abstract] [Full Text] [Related]
6. A comparison of methods to estimate anaerobic capacity: Accumulated oxygen deficit and W' during constant and all-out work-rate profiles. Muniz-Pumares D, Pedlar C, Godfrey R, Glaister M. J Sports Sci; 2017 Dec; 35(23):2357-2364. PubMed ID: 28019724 [Abstract] [Full Text] [Related]
7. Time Trials Versus Time-to-Exhaustion Tests: Effects on Critical Power, W', and Oxygen-Uptake Kinetics. Karsten B, Baker J, Naclerio F, Klose A, Bianco A, Nimmerichter A. Int J Sports Physiol Perform; 2018 Feb 01; 13(2):183-188. PubMed ID: 28530476 [Abstract] [Full Text] [Related]
8. Effect of pedal cadence on parameters of the hyperbolic power-time relationship. Hill DW, Smith JC, Leuschel JL, Chasteen SD, Miller SA. Int J Sports Med; 1995 Feb 01; 16(2):82-7. PubMed ID: 7751081 [Abstract] [Full Text] [Related]
10. The constant work rate critical power protocol overestimates ramp incremental exercise performance. Black MI, Jones AM, Kelly JA, Bailey SJ, Vanhatalo A. Eur J Appl Physiol; 2016 Dec 01; 116(11-12):2415-2422. PubMed ID: 27787608 [Abstract] [Full Text] [Related]
11. Can We Accurately Predict Critical Power and W' from a Single Ramp Incremental Exercise Test? Caen K, Bourgois JG, Stuer L, Mermans V, Boone J. Med Sci Sports Exerc; 2023 Aug 01; 55(8):1401-1408. PubMed ID: 36924332 [Abstract] [Full Text] [Related]
12. Comparison of inter-trial recovery times for the determination of critical power and W' in cycling. Karsten B, Hopker J, Jobson SA, Baker J, Petrigna L, Klose A, Beedie C. J Sports Sci; 2017 Jul 01; 35(14):1420-1425. PubMed ID: 27531664 [Abstract] [Full Text] [Related]
13. The magnitude of neuromuscular fatigue is not intensity dependent when cycling above critical power but relates to aerobic and anaerobic capacities. Schäfer LU, Hayes M, Dekerle J. Exp Physiol; 2019 Feb 01; 104(2):209-219. PubMed ID: 30468691 [Abstract] [Full Text] [Related]
14. A new single work bout test to estimate critical power and anaerobic work capacity. Bergstrom HC, Housh TJ, Zuniga JM, Camic CL, Traylor DA, Schmidt RJ, Johnson GO. J Strength Cond Res; 2012 Mar 01; 26(3):656-63. PubMed ID: 22310519 [Abstract] [Full Text] [Related]
16. Strength training increases endurance time to exhaustion during high-intensity exercise despite no change in critical power. Sawyer BJ, Stokes DG, Womack CJ, Morton RH, Weltman A, Gaesser GA. J Strength Cond Res; 2014 Mar 01; 28(3):601-9. PubMed ID: 23760362 [Abstract] [Full Text] [Related]
17. Critical power is positively related to skeletal muscle capillarity and type I muscle fibers in endurance-trained individuals. Mitchell EA, Martin NRW, Bailey SJ, Ferguson RA. J Appl Physiol (1985); 2018 Sep 01; 125(3):737-745. PubMed ID: 29878875 [Abstract] [Full Text] [Related]
18. Influence of prior sprint exercise on the parameters of the 'all-out critical power test' in men. Vanhatalo A, Jones AM. Exp Physiol; 2009 Feb 01; 94(2):255-63. PubMed ID: 18996948 [Abstract] [Full Text] [Related]
20. Differences among estimates of critical power and anaerobic work capacity derived from five mathematical models and the three-minute all-out test. Bergstrom HC, Housh TJ, Zuniga JM, Traylor DA, Lewis RW, Camic CL, Schmidt RJ, Johnson GO. J Strength Cond Res; 2014 Mar 01; 28(3):592-600. PubMed ID: 24566607 [Abstract] [Full Text] [Related] Page: [Next] [New Search]