These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
213 related items for PubMed ID: 16262279
1. Characterization of micropatterned lipid membranes on a gold surface by surface plasmon resonance imaging and electrochemical signaling of a pore-forming protein. Wang Z, Wilkop T, Cheng Q. Langmuir; 2005 Nov 08; 21(23):10292-6. PubMed ID: 16262279 [Abstract] [Full Text] [Related]
2. Electrochemical characterization of pore formation by bacterial protein toxins on hybrid supported membranes. Wilkop T, Xu D, Cheng Q. Langmuir; 2008 May 20; 24(10):5615-21. PubMed ID: 18402473 [Abstract] [Full Text] [Related]
3. Characterization of pore formation by streptolysin O on supported lipid membranes by impedance spectroscopy and surface plasmon resonance spectroscopy. Wilkop T, Xu D, Cheng Q. Langmuir; 2007 Jan 30; 23(3):1403-9. PubMed ID: 17241065 [Abstract] [Full Text] [Related]
4. Surface plasmon resonance imaging analysis of protein-receptor binding in supported membrane arrays on gold substrates with calcinated silicate films. Phillips KS, Wilkop T, Wu JJ, Al-Kaysi RO, Cheng Q. J Am Chem Soc; 2006 Aug 02; 128(30):9590-1. PubMed ID: 16866487 [Abstract] [Full Text] [Related]
5. Nanoscale glassification of gold substrates for surface plasmon resonance analysis of protein toxins with supported lipid membranes. Phillips KS, Han JH, Martinez M, Wang Z, Carter D, Cheng Q. Anal Chem; 2006 Jan 15; 78(2):596-603. PubMed ID: 16408945 [Abstract] [Full Text] [Related]
6. Electrochemical surface plasmon resonance detection of enzymatic reaction in bilayer lipid membranes. Wang J, Wang F, Chen H, Liu X, Dong S. Talanta; 2008 May 15; 75(3):666-70. PubMed ID: 18585129 [Abstract] [Full Text] [Related]
7. Bi-functionalization of a patterned Prussian blue array for amperometric measurement of glucose via two integrated detection schemes. Zhang N, Wilkop T, Lee S, Cheng Q. Analyst; 2007 Feb 15; 132(2):164-72. PubMed ID: 17260077 [Abstract] [Full Text] [Related]
8. Development of a "membrane cloaking" method for amperometric enzyme immunoassay and surface plasmon resonance analysis of proteins in serum samples. Phillips KS, Han JH, Cheng Q. Anal Chem; 2007 Feb 01; 79(3):899-907. PubMed ID: 17263314 [Abstract] [Full Text] [Related]
9. Stability of the gold/silica thin film interface: electrochemical and surface plasmon resonance studies. Szunerits S, Coffinier Y, Janel S, Boukherroub R. Langmuir; 2006 Dec 05; 22(25):10716-22. PubMed ID: 17129051 [Abstract] [Full Text] [Related]
10. Differential mechanisms for calcium-dependent protein/membrane association as evidenced from SPR-binding studies on supported biomimetic membranes. Rossi C, Homand J, Bauche C, Hamdi H, Ladant D, Chopineau J. Biochemistry; 2003 Dec 30; 42(51):15273-83. PubMed ID: 14690437 [Abstract] [Full Text] [Related]
11. Functional lipid microstructures immobilized on a gold electrode for voltammetric biosensing of cholera toxin. Cheng Q, Zhu S, Song J, Zhang N. Analyst; 2004 Apr 30; 129(4):309-14. PubMed ID: 15042161 [Abstract] [Full Text] [Related]
12. Triggering blue-red transition response in polydiacetylene vesicles: an electrochemical surface plasmon resonance method. Kew SJ, Hall EA. Analyst; 2007 Aug 30; 132(8):801-10. PubMed ID: 17646880 [Abstract] [Full Text] [Related]
13. A molecular toolkit for highly insulating tethered bilayer lipid membranes on various substrates. Atanasov V, Atanasova PP, Vockenroth IK, Knorr N, Köper I. Bioconjug Chem; 2006 Aug 30; 17(3):631-7. PubMed ID: 16704200 [Abstract] [Full Text] [Related]
14. Regenerable tethered bilayer lipid membrane arrays for multiplexed label-free analysis of lipid-protein interactions on poly(dimethylsiloxane) microchips using SPR imaging. Taylor JD, Linman MJ, Wilkop T, Cheng Q. Anal Chem; 2009 Feb 01; 81(3):1146-53. PubMed ID: 19178341 [Abstract] [Full Text] [Related]
15. The preparation and characterization of poly(o-phenylenediamine)/gold nanoparticles interface for immunoassay by surface plasmon resonance and electrochemistry. Wang Q, Tang H, Xie Q, Jia X, Zhang Y, Tan L, Yao S. Colloids Surf B Biointerfaces; 2008 Jun 01; 63(2):254-61. PubMed ID: 18242962 [Abstract] [Full Text] [Related]
16. Development of air-stable, supported membrane arrays with photolithography for study of phosphoinositide-protein interactions using surface plasmon resonance imaging. Wang Z, Wilkop T, Han JH, Dong Y, Linman MJ, Cheng Q. Anal Chem; 2008 Aug 15; 80(16):6397-404. PubMed ID: 18620431 [Abstract] [Full Text] [Related]
17. Vesicular polydiacetylene sensor for colorimetric signaling of bacterial pore-forming toxin. Ma G, Cheng Q. Langmuir; 2005 Jul 05; 21(14):6123-6. PubMed ID: 15982007 [Abstract] [Full Text] [Related]
18. Detection of membrane-binding proteins by surface plasmon resonance with an all-aqueous amplification scheme. Liu Y, Cheng Q. Anal Chem; 2012 Apr 03; 84(7):3179-86. PubMed ID: 22439623 [Abstract] [Full Text] [Related]
19. Electrochemical and surface plasmon resonance characterization of beta-cyclodextrin-based self-assembled monolayers and evaluation of their inclusion complexes with glucocorticoids. Frasconi M, Mazzei F. Nanotechnology; 2009 Jul 15; 20(28):285502. PubMed ID: 19550013 [Abstract] [Full Text] [Related]
20. Surface plasmon resonance study of vesicle rupture by virus-mimetic attack. Chah S, Zare RN. Phys Chem Chem Phys; 2008 Jun 14; 10(22):3203-8. PubMed ID: 18500396 [Abstract] [Full Text] [Related] Page: [Next] [New Search]