These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


562 related items for PubMed ID: 16269716

  • 1. Monitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making.
    Pérez-Torrado R, Bruno-Bárcena JM, Matallana E.
    Appl Environ Microbiol; 2005 Nov; 71(11):6831-7. PubMed ID: 16269716
    [Abstract] [Full Text] [Related]

  • 2. Fermentative capacity of dry active wine yeast requires a specific oxidative stress response during industrial biomass growth.
    Pérez-Torrado R, Gómez-Pastor R, Larsson C, Matallana E.
    Appl Microbiol Biotechnol; 2009 Jan; 81(5):951-60. PubMed ID: 18836715
    [Abstract] [Full Text] [Related]

  • 3. Modification of the TRX2 gene dose in Saccharomyces cerevisiae affects hexokinase 2 gene regulation during wine yeast biomass production.
    Gómez-Pastor R, Pérez-Torrado R, Matallana E.
    Appl Microbiol Biotechnol; 2012 May; 94(3):773-87. PubMed ID: 22223102
    [Abstract] [Full Text] [Related]

  • 4. Expression of stress response genes in wine strains with different fermentative behavior.
    Zuzuarregui A, del Olmo ML.
    FEMS Yeast Res; 2004 May; 4(7):699-710. PubMed ID: 15093773
    [Abstract] [Full Text] [Related]

  • 5. Proteomic evolution of a wine yeast during the first hours of fermentation.
    Salvadó Z, Chiva R, Rodríguez-Vargas S, Rández-Gil F, Mas A, Guillamón JM.
    FEMS Yeast Res; 2008 Nov; 8(7):1137-46. PubMed ID: 18503542
    [Abstract] [Full Text] [Related]

  • 6. Analysis of the expression of some stress induced genes in several commercial wine yeast strains at the beginning of vinification.
    Zuzuarregui A, Carrasco P, Palacios A, Julien A, del Olmo M.
    J Appl Microbiol; 2005 Nov; 98(2):299-307. PubMed ID: 15659184
    [Abstract] [Full Text] [Related]

  • 7. Oxidative stress responses and lipid peroxidation damage are induced during dehydration in the production of dry active wine yeasts.
    Garre E, Raginel F, Palacios A, Julien A, Matallana E.
    Int J Food Microbiol; 2010 Jan 01; 136(3):295-303. PubMed ID: 19914726
    [Abstract] [Full Text] [Related]

  • 8. Comparative analysis of transcriptional responses to saline stress in the laboratory and brewing strains of Saccharomyces cerevisiae with DNA microarray.
    Hirasawa T, Nakakura Y, Yoshikawa K, Ashitani K, Nagahisa K, Furusawa C, Katakura Y, Shimizu H, Shioya S.
    Appl Microbiol Biotechnol; 2006 Apr 01; 70(3):346-57. PubMed ID: 16283296
    [Abstract] [Full Text] [Related]

  • 9. Early transcriptional response of wine yeast after rehydration: osmotic shock and metabolic activation.
    Novo M, Beltran G, Rozes N, Guillamon JM, Sokol S, Leberre V, François J, Mas A.
    FEMS Yeast Res; 2007 Mar 01; 7(2):304-16. PubMed ID: 17132143
    [Abstract] [Full Text] [Related]

  • 10. Genetic manipulation of HSP26 and YHR087W stress genes may improve fermentative behaviour in wine yeasts under vinification conditions.
    Jiménez-Martí E, Zuzuarregui A, Ridaura I, Lozano N, del Olmo M.
    Int J Food Microbiol; 2009 Mar 31; 130(2):122-30. PubMed ID: 19217680
    [Abstract] [Full Text] [Related]

  • 11. Stress response and expression patterns in wine fermentations of yeast genes induced at the diauxic shift.
    Puig S, Pérez-Ortín JE.
    Yeast; 2000 Jan 30; 16(2):139-48. PubMed ID: 10641036
    [Abstract] [Full Text] [Related]

  • 12. Transcriptomic and proteomic insights of the wine yeast biomass propagation process.
    Gómez-Pastor R, Pérez-Torrado R, Cabiscol E, Matallana E.
    FEMS Yeast Res; 2010 Nov 30; 10(7):870-84. PubMed ID: 20738407
    [Abstract] [Full Text] [Related]

  • 13. The response of the yeast Saccharomyces cerevisiae to sudden vs. gradual changes in environmental stress monitored by expression of the stress response protein Hsp12p.
    Nisamedtinov I, Lindsey GG, Karreman R, Orumets K, Koplimaa M, Kevvai K, Paalme T.
    FEMS Yeast Res; 2008 Sep 30; 8(6):829-38. PubMed ID: 18625028
    [Abstract] [Full Text] [Related]

  • 14. Quantitative analysis of wine yeast gene expression profiles under winemaking conditions.
    Varela C, Cárdenas J, Melo F, Agosin E.
    Yeast; 2005 Apr 15; 22(5):369-83. PubMed ID: 15806604
    [Abstract] [Full Text] [Related]

  • 15. Analyses of stress resistance under laboratory conditions constitute a suitable criterion for wine yeast selection.
    Zuzuarregui A, del Olmo M.
    Antonie Van Leeuwenhoek; 2004 May 15; 85(4):271-80. PubMed ID: 15028866
    [Abstract] [Full Text] [Related]

  • 16. Stationary-phase gene expression in Saccharomyces cerevisiae during wine fermentation.
    Riou C, Nicaud JM, Barre P, Gaillardin C.
    Yeast; 1997 Aug 15; 13(10):903-15. PubMed ID: 9271106
    [Abstract] [Full Text] [Related]

  • 17. Anaerobic glycerol production by Saccharomyces cerevisiae strains under hyperosmotic stress.
    Modig T, Granath K, Adler L, Lidén G.
    Appl Microbiol Biotechnol; 2007 May 15; 75(2):289-96. PubMed ID: 17221190
    [Abstract] [Full Text] [Related]

  • 18. Analysis of the genomic response of a wine yeast to rehydration and inoculation.
    Rossignol T, Postaire O, Storaï J, Blondin B.
    Appl Microbiol Biotechnol; 2006 Aug 15; 71(5):699-712. PubMed ID: 16607525
    [Abstract] [Full Text] [Related]

  • 19. Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation.
    Rossignol T, Dulau L, Julien A, Blondin B.
    Yeast; 2003 Dec 15; 20(16):1369-85. PubMed ID: 14663829
    [Abstract] [Full Text] [Related]

  • 20. Inoculum size-dependent interactive regulation of metabolism and stress response of Saccharomyces cerevisiae revealed by comparative metabolomics.
    Ding MZ, Tian HC, Cheng JS, Yuan YJ.
    J Biotechnol; 2009 Dec 15; 144(4):279-86. PubMed ID: 19808067
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 29.