These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
121 related items for PubMed ID: 16277416
1. Phytoremediation of metolachlor by transgenic rice plants expressing human CYP2B6. Kawahigashi H, Hirose S, Ohkawa H, Ohkawa Y. J Agric Food Chem; 2005 Nov 16; 53(23):9155-60. PubMed ID: 16277416 [Abstract] [Full Text] [Related]
2. Transgenic rice containing human CYP2B6 detoxifies various classes of herbicides. Hirose S, Kawahigashi H, Ozawa K, Shiota N, Inui H, Ohkawa H, Ohkawa Y. J Agric Food Chem; 2005 May 04; 53(9):3461-7. PubMed ID: 15853388 [Abstract] [Full Text] [Related]
3. Phytoremediation of the herbicides atrazine and metolachlor by transgenic rice plants expressing human CYP1A1, CYP2B6, and CYP2C19. Kawahigashi H, Hirose S, Ohkawa H, Ohkawa Y. J Agric Food Chem; 2006 Apr 19; 54(8):2985-91. PubMed ID: 16608219 [Abstract] [Full Text] [Related]
4. Transgenic rice plants expressing human p450 genes involved in xenobiotic metabolism for phytoremediation. Kawahigashi H, Hirose S, Ohkawa H, Ohkawa Y. J Mol Microbiol Biotechnol; 2008 Apr 19; 15(2-3):212-9. PubMed ID: 18685273 [Abstract] [Full Text] [Related]
5. Transgenic rice plants expressing human CYP1A1 remediate the triazine herbicides atrazine and simazine. Kawahigashi H, Hirose S, Ohkawa H, Ohkawa Y. J Agric Food Chem; 2005 Nov 02; 53(22):8557-64. PubMed ID: 16248553 [Abstract] [Full Text] [Related]
7. Herbicide resistance in transgenic plants with mammalian P450 monooxygenase genes. Inui H, Ohkawa H. Pest Manag Sci; 2005 Mar 02; 61(3):286-91. PubMed ID: 15660356 [Abstract] [Full Text] [Related]
8. Herbicide-induced anthocyanin accumulation in transgenic rice by expression of rice OSB2 under the control of rice CYP72A21 promoter. Hirose S, Kawahigashi H, Tagiri A, Ohkawa Y. J Agric Food Chem; 2008 Feb 27; 56(4):1259-63. PubMed ID: 18217708 [Abstract] [Full Text] [Related]
9. Spectral characterization and chiral interactions of plant microsomal cytochrome P450 with metolachlor and herbicide safeners. Liu H. J Environ Sci Health B; 2010 Jan 27; 45(1):33-9. PubMed ID: 20390928 [Abstract] [Full Text] [Related]
10. Overexpression of a specific soybean GmGSTU4 isoenzyme improves diphenyl ether and chloroacetanilide herbicide tolerance of transgenic tobacco plants. Benekos K, Kissoudis C, Nianiou-Obeidat I, Labrou N, Madesis P, Kalamaki M, Makris A, Tsaftaris A. J Biotechnol; 2010 Oct 01; 150(1):195-201. PubMed ID: 20638428 [Abstract] [Full Text] [Related]
13. Degradation and persistence of metolachlor in soil: effects of concentration, soil moisture, soil depth, and sterilization. Rice PJ, Anderson TA, Coats JR. Environ Toxicol Chem; 2002 Dec 01; 21(12):2640-8. PubMed ID: 12463559 [Abstract] [Full Text] [Related]
18. Impact of redox conditions on metolachlor and metribuzin degradation in Mississippi flood plain soils. Mulbach CK, Porthouse JD, Jugsujinda A, DeLaune RD, Johnson AB. J Environ Sci Health B; 2000 Nov 01; 35(6):689-704. PubMed ID: 11069013 [Abstract] [Full Text] [Related]
20. Fate of autumn-applied metolachlor in a clay loam in the northern U.S. Corn Belt. Sharratt B, Sander K, Tierney D. J Environ Sci Health B; 2003 Jan 01; 38(1):37-48. PubMed ID: 12602822 [Abstract] [Full Text] [Related] Page: [Next] [New Search]