These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


97 related items for PubMed ID: 16282679

  • 1. Characteristics of (+)-catechin and (-)-epicatechin transport across pig intestinal brush border membranes.
    Starp C, Alteheld B, Stehle P.
    Ann Nutr Metab; 2006; 50(1):59-65. PubMed ID: 16282679
    [Abstract] [Full Text] [Related]

  • 2. Sulfate-sodium cotransport by brush-border membrane vesicles isolated from rat ileum.
    Lücke H, Stange G, Murer H.
    Gastroenterology; 1981 Jan; 80(1):22-30. PubMed ID: 6161060
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Phenylalanine uptake in isolated renal brush border vesicles.
    Evers J, Murer H, Kinne R.
    Biochim Biophys Acta; 1976 Apr 05; 426(4):598-615. PubMed ID: 1259984
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. [Glycine uptake in brush border vesicles isolated from the rat intestinal cells].
    Corcelli A, Rago G, Scalera V, Storelli C.
    Boll Soc Ital Biol Sper; 1983 Dec 30; 59(12):1928-34. PubMed ID: 6671050
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Carbohydrate absorption. Studies on the glucose transport by isolated brush border membranes. A contribution towards an understanding of the molecular mechanism of sugar absorption.
    Hopper U.
    Bibl Nutr Dieta; 1975 Dec 30; (22):42-9. PubMed ID: 1095010
    [Abstract] [Full Text] [Related]

  • 9. H+ coupled active transport of bestatin via the dipeptide transport system in rabbit intestinal brush-border membranes.
    Inui K, Tomita Y, Katsura T, Okano T, Takano M, Hori R.
    J Pharmacol Exp Ther; 1992 Feb 30; 260(2):482-6. PubMed ID: 1738097
    [Abstract] [Full Text] [Related]

  • 10. Studies on the mechanism of biotin uptake by brush-border membrane vesicles of hamster enterocytes.
    León-Del-Río A, Hol-Soto-Borja D, Velázquez A.
    Arch Med Res; 1993 Feb 30; 24(2):143-6. PubMed ID: 8274840
    [Abstract] [Full Text] [Related]

  • 11. Functional characterization of intestinal L-carnitine transport.
    Durán JM, Peral MJ, Calonge ML, Ilundáin AA.
    J Membr Biol; 2002 Jan 01; 185(1):65-74. PubMed ID: 11891565
    [Abstract] [Full Text] [Related]

  • 12. Characteristics of putrescine uptake by human brush border membrane vesicles.
    Stein J, Milovic V, Lembcke B, Caspary WF.
    Z Gastroenterol; 1992 Dec 01; 30(12):841-5. PubMed ID: 1481548
    [Abstract] [Full Text] [Related]

  • 13. Carrier-mediated uptake of nicotinic acid by rat intestinal brush-border membrane vesicles and relation to monocarboxylic acid transport.
    Simanjuntak MT, Tamai I, Terasaki T, Tsuji A.
    J Pharmacobiodyn; 1990 May 01; 13(5):301-9. PubMed ID: 2273446
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Sodium ion/L-lactate co-transport in rabbit small-intestinal brush-border-membrane vesicles.
    Hildmann B, Storelli C, Haase W, Barac-Nieto M, Murer H.
    Biochem J; 1980 Jan 15; 186(1):169-76. PubMed ID: 7370006
    [Abstract] [Full Text] [Related]

  • 16. Proton-cotransport of pravastatin across intestinal brush-border membrane.
    Tamai I, Takanaga H, Maeda H, Ogihara T, Yoneda M, Tsuji A.
    Pharm Res; 1995 Nov 15; 12(11):1727-32. PubMed ID: 8592677
    [Abstract] [Full Text] [Related]

  • 17. Characterization of the transport of tri- and dicarboxylates by pig intestinal brush-border membrane vesicles.
    Wolffram S, Hagemann C, Grenacher B, Scharrer E.
    Comp Biochem Physiol Comp Physiol; 1992 Apr 15; 101(4):759-67. PubMed ID: 1351451
    [Abstract] [Full Text] [Related]

  • 18. Phosphate transport in intestinal brush-border membrane vesicles: effect of pH and dietary phosphate.
    Quamme GA.
    Am J Physiol; 1985 Aug 15; 249(2 Pt 1):G168-76. PubMed ID: 4025545
    [Abstract] [Full Text] [Related]

  • 19. Ionic-diffusion potential-dependent transport of a new quinolone, sparfloxacin, across rat intestinal brush-border membrane.
    Iseki K, Hirano T, Tsuji K, Miyazaki S, Takada M, Kobayashi M, Sugawara M, Miyazaki K.
    J Pharm Pharmacol; 1998 Jun 15; 50(6):627-34. PubMed ID: 9680072
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.