These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


567 related items for PubMed ID: 16284181

  • 21. Gene activation cascade triggered by a single photoperiodic cycle inducing flowering in Sinapis alba.
    D'Aloia M, Tamseddak K, Bonhomme D, Bonhomme F, Bernier G, Périlleux C.
    Plant J; 2009 Sep; 59(6):962-73. PubMed ID: 19473326
    [Abstract] [Full Text] [Related]

  • 22. Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity.
    Cockram J, Jones H, Leigh FJ, O'Sullivan D, Powell W, Laurie DA, Greenland AJ.
    J Exp Bot; 2007 Sep; 58(6):1231-44. PubMed ID: 17420173
    [Abstract] [Full Text] [Related]

  • 23. Phytochrome C is a key factor controlling long-day flowering in barley.
    Nishida H, Ishihara D, Ishii M, Kaneko T, Kawahigashi H, Akashi Y, Saisho D, Tanaka K, Handa H, Takeda K, Kato K.
    Plant Physiol; 2013 Oct; 163(2):804-14. PubMed ID: 24014575
    [Abstract] [Full Text] [Related]

  • 24. The Vrn-H2 locus is a major determinant of flowering time in a facultative x winter growth habit barley (Hordeum vulgare L.) mapping population.
    Karsai I, Szucs P, Mészáros K, Filichkina T, Hayes PM, Skinner JS, Láng L, Bedo Z.
    Theor Appl Genet; 2005 May; 110(8):1458-66. PubMed ID: 15834697
    [Abstract] [Full Text] [Related]

  • 25. The differential expression of HvCO9, a member of the CONSTANS-like gene family, contributes to the control of flowering under short-day conditions in barley.
    Kikuchi R, Kawahigashi H, Oshima M, Ando T, Handa H.
    J Exp Bot; 2012 Jan; 63(2):773-84. PubMed ID: 22016423
    [Abstract] [Full Text] [Related]

  • 26. Functional analysis of FT and TFL1 orthologs from orchid (Oncidium Gower Ramsey) that regulate the vegetative to reproductive transition.
    Hou CJ, Yang CH.
    Plant Cell Physiol; 2009 Aug; 50(8):1544-57. PubMed ID: 19570813
    [Abstract] [Full Text] [Related]

  • 27. Dawn and Dusk Set States of the Circadian Oscillator in Sprouting Barley (Hordeum vulgare) Seedlings.
    Deng W, Clausen J, Boden S, Oliver SN, Casao MC, Ford B, Anderssen RS, Trevaskis B.
    PLoS One; 2015 Aug; 10(6):e0129781. PubMed ID: 26068005
    [Abstract] [Full Text] [Related]

  • 28. early maturity 7 promotes early flowering by controlling the light input into the circadian clock in barley.
    Helmsorig G, Walla A, Rütjes T, Buchmann G, Schüller R, Hensel G, von Korff M.
    Plant Physiol; 2024 Jan 31; 194(2):849-866. PubMed ID: 37951242
    [Abstract] [Full Text] [Related]

  • 29. Effects of photo and thermo cycles on flowering time in barley: a genetical phenomics approach.
    Karsai I, Szucs P, Koszegi B, Hayes PM, Casas A, Bedo Z, Veisz O.
    J Exp Bot; 2008 Jan 31; 59(10):2707-15. PubMed ID: 18550600
    [Abstract] [Full Text] [Related]

  • 30. The Arabidopsis SPA1 gene is required for circadian clock function and photoperiodic flowering.
    Ishikawa M, Kiba T, Chua NH.
    Plant J; 2006 Jun 31; 46(5):736-46. PubMed ID: 16709190
    [Abstract] [Full Text] [Related]

  • 31. Induced mutations in circadian clock regulator Mat-a facilitated short-season adaptation and range extension in cultivated barley.
    Zakhrabekova S, Gough SP, Braumann I, Müller AH, Lundqvist J, Ahmann K, Dockter C, Matyszczak I, Kurowska M, Druka A, Waugh R, Graner A, Stein N, Steuernagel B, Lundqvist U, Hansson M.
    Proc Natl Acad Sci U S A; 2012 Mar 13; 109(11):4326-31. PubMed ID: 22371569
    [Abstract] [Full Text] [Related]

  • 32. A genetic study of the Arabidopsis circadian clock with reference to the TIMING OF CAB EXPRESSION 1 (TOC1) gene.
    Ito S, Kawamura H, Niwa Y, Nakamichi N, Yamashino T, Mizuno T.
    Plant Cell Physiol; 2009 Feb 13; 50(2):290-303. PubMed ID: 19098071
    [Abstract] [Full Text] [Related]

  • 33. Barley Hv CIRCADIAN CLOCK ASSOCIATED 1 and Hv PHOTOPERIOD H1 Are Circadian Regulators That Can Affect Circadian Rhythms in Arabidopsis.
    Kusakina J, Rutterford Z, Cotter S, Martí MC, Laurie DA, Greenland AJ, Hall A, Webb AA.
    PLoS One; 2015 Feb 13; 10(6):e0127449. PubMed ID: 26076005
    [Abstract] [Full Text] [Related]

  • 34. Functional characterization of AP3, SOC1 and WUS homologues from citrus (Citrus sinensis).
    Tan FC, Swain SM.
    Physiol Plant; 2007 Nov 13; 131(3):481-95. PubMed ID: 18251886
    [Abstract] [Full Text] [Related]

  • 35. Insight into missing genetic links between two evening-expressed pseudo-response regulator genes TOC1 and PRR5 in the circadian clock-controlled circuitry in Arabidopsis thaliana.
    Ito S, Niwa Y, Nakamichi N, Kawamura H, Yamashino T, Mizuno T.
    Plant Cell Physiol; 2008 Feb 13; 49(2):201-13. PubMed ID: 18178585
    [Abstract] [Full Text] [Related]

  • 36. Ppd-H1 integrates drought stress signals to control spike development and flowering time in barley.
    Gol L, Haraldsson EB, von Korff M.
    J Exp Bot; 2021 Jan 20; 72(1):122-136. PubMed ID: 32459309
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. Chlamydomonas CONSTANS and the evolution of plant photoperiodic signaling.
    Serrano G, Herrera-Palau R, Romero JM, Serrano A, Coupland G, Valverde F.
    Curr Biol; 2009 Mar 10; 19(5):359-68. PubMed ID: 19230666
    [Abstract] [Full Text] [Related]

  • 39. Major flowering time genes of barley: allelic diversity, effects, and comparison with wheat.
    Fernández-Calleja M, Casas AM, Igartua E.
    Theor Appl Genet; 2021 Jul 10; 134(7):1867-1897. PubMed ID: 33969431
    [Abstract] [Full Text] [Related]

  • 40. CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees.
    Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O.
    Science; 2006 May 19; 312(5776):1040-3. PubMed ID: 16675663
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 29.