These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
706 related items for PubMed ID: 16285771
1. Analysis of droplet evaporation on a superhydrophobic surface. McHale G, Aqil S, Shirtcliffe NJ, Newton MI, Erbil HY. Langmuir; 2005 Nov 22; 21(24):11053-60. PubMed ID: 16285771 [Abstract] [Full Text] [Related]
2. Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces. Erbil HY, Cansoy CE. Langmuir; 2009 Dec 15; 25(24):14135-45. PubMed ID: 19630435 [Abstract] [Full Text] [Related]
4. Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces. Zheng QS, Yu Y, Zhao ZH. Langmuir; 2005 Dec 20; 21(26):12207-12. PubMed ID: 16342993 [Abstract] [Full Text] [Related]
6. Mean-field theory of liquid droplets on roughened solid surfaces: application to superhydrophobicity. Porcheron F, Monson PA. Langmuir; 2006 Feb 14; 22(4):1595-601. PubMed ID: 16460079 [Abstract] [Full Text] [Related]
7. Wetting transition and optimal design for microstructured surfaces with hydrophobic and hydrophilic materials. Park CI, Jeong HE, Lee SH, Cho HS, Suh KY. J Colloid Interface Sci; 2009 Aug 01; 336(1):298-303. PubMed ID: 19426991 [Abstract] [Full Text] [Related]
8. Decoupling of the liquid response of a superhydrophobic quartz crystal microbalance. Roach P, McHale G, Evans CR, Shirtcliffe NJ, Newton MI. Langmuir; 2007 Sep 11; 23(19):9823-30. PubMed ID: 17705513 [Abstract] [Full Text] [Related]
10. Superhydrophobicity of biological and technical surfaces under moisture condensation: stability in relation to surface structure. Mockenhaupt B, Ensikat HJ, Spaeth M, Barthlott W. Langmuir; 2008 Dec 02; 24(23):13591-7. PubMed ID: 18959433 [Abstract] [Full Text] [Related]
11. Evaporation kinetics of sessile water droplets on micropillared superhydrophobic surfaces. Xu W, Leeladhar R, Kang YT, Choi CH. Langmuir; 2013 May 21; 29(20):6032-41. PubMed ID: 23656600 [Abstract] [Full Text] [Related]
13. Dynamic behavior of the water droplet impact on a textured hydrophobic/superhydrophobic surface: the effect of the remaining liquid film arising on the pillars' tops on the contact time. Li X, Ma X, Lan Z. Langmuir; 2010 Apr 06; 26(7):4831-8. PubMed ID: 20151667 [Abstract] [Full Text] [Related]
14. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion. Liu M, Zheng Y, Zhai J, Jiang L. Acc Chem Res; 2010 Mar 16; 43(3):368-77. PubMed ID: 19954162 [Abstract] [Full Text] [Related]
15. Evaporation of Sessile Droplets on Slippery Liquid-Infused Porous Surfaces (SLIPS). Guan JH, Wells GG, Xu B, McHale G, Wood D, Martin J, Stuart-Cole S. Langmuir; 2015 Nov 03; 31(43):11781-9. PubMed ID: 26446177 [Abstract] [Full Text] [Related]
17. Robust Cassie state of wetting in transparent superhydrophobic coatings. Tuvshindorj U, Yildirim A, Ozturk FE, Bayindir M. ACS Appl Mater Interfaces; 2014 Jun 25; 6(12):9680-8. PubMed ID: 24823960 [Abstract] [Full Text] [Related]
18. Effect of nonionic surfactant on wetting behavior of an evaporating drop under a reduced pressure environment. Sefiane K. J Colloid Interface Sci; 2004 Apr 15; 272(2):411-9. PubMed ID: 15028506 [Abstract] [Full Text] [Related]