These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


382 related items for PubMed ID: 16286866

  • 1. Muscle, ligament, and joint-contact forces at the knee during walking.
    Shelburne KB, Torry MR, Pandy MG.
    Med Sci Sports Exerc; 2005 Nov; 37(11):1948-56. PubMed ID: 16286866
    [Abstract] [Full Text] [Related]

  • 2. Comparison of shear forces and ligament loading in the healthy and ACL-deficient knee during gait.
    Shelburne KB, Pandy MG, Torry MR.
    J Biomech; 2004 Mar; 37(3):313-9. PubMed ID: 14757450
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Estimation of ligament loading and anterior tibial translation in healthy and ACL-deficient knees during gait and the influence of increasing tibial slope using EMG-driven approach.
    Shao Q, MacLeod TD, Manal K, Buchanan TS.
    Ann Biomed Eng; 2011 Jan; 39(1):110-21. PubMed ID: 20683675
    [Abstract] [Full Text] [Related]

  • 5. The effect of hamstring muscle compensation for anterior laxity in the ACL-deficient knee during gait.
    Liu W, Maitland ME.
    J Biomech; 2000 Jul; 33(7):871-9. PubMed ID: 10831762
    [Abstract] [Full Text] [Related]

  • 6. Changes in gastrocnemii activation at mid-to-late stance markedly affects the intact and anterior cruciate ligament deficient knee biomechanics and stability in gait.
    Sharifi M, Shirazi-Adl A.
    Knee; 2021 Mar; 29():530-540. PubMed ID: 33756263
    [Abstract] [Full Text] [Related]

  • 7. Effect of muscle compensation on knee instability during ACL-deficient gait.
    Shelburne KB, Torry MR, Pandy MG.
    Med Sci Sports Exerc; 2005 Apr; 37(4):642-8. PubMed ID: 15809564
    [Abstract] [Full Text] [Related]

  • 8. A musculoskeletal model of the knee for evaluating ligament forces during isometric contractions.
    Shelburne KB, Pandy MG.
    J Biomech; 1997 Feb; 30(2):163-76. PubMed ID: 9001937
    [Abstract] [Full Text] [Related]

  • 9. Role of gastrocnemius activation in knee joint biomechanics: gastrocnemius acts as an ACL antagonist.
    Adouni M, Shirazi-Adl A, Marouane H.
    Comput Methods Biomech Biomed Engin; 2016 Feb; 19(4):376-85. PubMed ID: 25892616
    [Abstract] [Full Text] [Related]

  • 10. Selective contribution of each hamstring muscle to anterior cruciate ligament protection and tibiofemoral joint stability in leg-extension exercise: a simulation study.
    Biscarini A, Botti FM, Pettorossi VE.
    Eur J Appl Physiol; 2013 Sep; 113(9):2263-73. PubMed ID: 23670482
    [Abstract] [Full Text] [Related]

  • 11. The patella ligament insertion angle influences quadriceps usage during walking of anterior cruciate ligament deficient patients.
    Shin CS, Chaudhari AM, Dyrby CO, Andriacchi TP.
    J Orthop Res; 2007 Dec; 25(12):1643-50. PubMed ID: 17593539
    [Abstract] [Full Text] [Related]

  • 12. Influence of Ligament Properties on Tibiofemoral Mechanics in Walking.
    Smith CR, Lenhart RL, Kaiser J, Vignos MF, Thelen DG.
    J Knee Surg; 2016 Feb; 29(2):99-106. PubMed ID: 26408997
    [Abstract] [Full Text] [Related]

  • 13. Computational biomechanics of human knee joint in stair ascent: Muscle-ligament-contact forces and comparison with level walking.
    Makani A, Shirazi-Adl SA, Ghezelbash F.
    Int J Numer Method Biomed Eng; 2022 Nov; 38(11):e3646. PubMed ID: 36054682
    [Abstract] [Full Text] [Related]

  • 14. Medial collateral ligament insertion site and contact forces in the ACL-deficient knee.
    Ellis BJ, Lujan TJ, Dalton MS, Weiss JA.
    J Orthop Res; 2006 Apr; 24(4):800-10. PubMed ID: 16514656
    [Abstract] [Full Text] [Related]

  • 15. Contributions of the soleus and gastrocnemius muscles to the anterior cruciate ligament loading during single-leg landing.
    Mokhtarzadeh H, Yeow CH, Hong Goh JC, Oetomo D, Malekipour F, Lee PV.
    J Biomech; 2013 Jul 26; 46(11):1913-20. PubMed ID: 23731572
    [Abstract] [Full Text] [Related]

  • 16. Model prediction of anterior cruciate ligament force during drop-landings.
    Pflum MA, Shelburne KB, Torry MR, Decker MJ, Pandy MG.
    Med Sci Sports Exerc; 2004 Nov 26; 36(11):1949-58. PubMed ID: 15514512
    [Abstract] [Full Text] [Related]

  • 17. Knee joint mechanics under quadriceps--hamstrings muscle forces are influenced by tibial restraint.
    Mesfar W, Shirazi-Adl A.
    Clin Biomech (Bristol); 2006 Oct 26; 21(8):841-8. PubMed ID: 16774800
    [Abstract] [Full Text] [Related]

  • 18. Combined measurement and modeling of specimen-specific knee mechanics for healthy and ACL-deficient conditions.
    Ali AA, Harris MD, Shalhoub S, Maletsky LP, Rullkoetter PJ, Shelburne KB.
    J Biomech; 2017 May 24; 57():117-124. PubMed ID: 28457606
    [Abstract] [Full Text] [Related]

  • 19. Steeper posterior tibial slope markedly increases ACL force in both active gait and passive knee joint under compression.
    Marouane H, Shirazi-Adl A, Adouni M, Hashemi J.
    J Biomech; 2014 Apr 11; 47(6):1353-9. PubMed ID: 24576586
    [Abstract] [Full Text] [Related]

  • 20. Contributions to the understanding of gait control.
    Simonsen EB.
    Dan Med J; 2014 Apr 11; 61(4):B4823. PubMed ID: 24814597
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.