These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


614 related items for PubMed ID: 16289673

  • 41. Composite vegetable waste as renewable resource for bioelectricity generation through non-catalyzed open-air cathode microbial fuel cell.
    Venkata Mohan S, Mohanakrishna G, Sarma PN.
    Bioresour Technol; 2010 Feb; 101(3):970-6. PubMed ID: 19818602
    [Abstract] [Full Text] [Related]

  • 42.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 43.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 44. Nitrogen removal from wastewater using membrane aerated microbial fuel cell techniques.
    Yu CP, Liang Z, Das A, Hu Z.
    Water Res; 2011 Jan; 45(3):1157-64. PubMed ID: 21131019
    [Abstract] [Full Text] [Related]

  • 45.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 46.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 47. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells.
    Oh SE, Logan BE.
    Appl Microbiol Biotechnol; 2006 Mar; 70(2):162-9. PubMed ID: 16167143
    [Abstract] [Full Text] [Related]

  • 48.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 49. Study on biomethonization of waste water from jam industries.
    Mohan S, Sunny N.
    Bioresour Technol; 2008 Jan; 99(1):210-3. PubMed ID: 17275291
    [Abstract] [Full Text] [Related]

  • 50. Production of electricity during wastewater treatment using a single chamber microbial fuel cell.
    Liu H, Ramnarayanan R, Logan BE.
    Environ Sci Technol; 2004 Apr 01; 38(7):2281-5. PubMed ID: 15112835
    [Abstract] [Full Text] [Related]

  • 51.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 52.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 53. Electricity generation from the treatment of wastewater with a hybrid up-flow microbial fuel cell.
    Katuri KP, Scott K.
    Biotechnol Bioeng; 2010 Sep 01; 107(1):52-8. PubMed ID: 20506286
    [Abstract] [Full Text] [Related]

  • 54.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 55. Reduction of COD in wastewater from an organized tannery industrial region by Electro-Fenton process.
    Kurt U, Apaydin O, Gonullu MT.
    J Hazard Mater; 2007 May 08; 143(1-2):33-40. PubMed ID: 17014953
    [Abstract] [Full Text] [Related]

  • 56. Continuous microbial fuel cells convert carbohydrates to electricity.
    Rabaey I, Ossieur W, Verhaege M, Verstraete W.
    Water Sci Technol; 2005 May 08; 52(1-2):515-23. PubMed ID: 16180472
    [Abstract] [Full Text] [Related]

  • 57. Production of bioenergy and biochemicals from industrial and agricultural wastewater.
    Angenent LT, Karim K, Al-Dahhan MH, Wrenn BA, Domíguez-Espinosa R.
    Trends Biotechnol; 2004 Sep 08; 22(9):477-85. PubMed ID: 15331229
    [Abstract] [Full Text] [Related]

  • 58.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 59. Efficient electricity production and simultaneously wastewater treatment via a high-performance photocatalytic fuel cell.
    Liu Y, Li J, Zhou B, Li X, Chen H, Chen Q, Wang Z, Li L, Wang J, Cai W.
    Water Res; 2011 Jul 08; 45(13):3991-8. PubMed ID: 21620432
    [Abstract] [Full Text] [Related]

  • 60.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 31.