These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
129 related items for PubMed ID: 1629096
1. Role of endothelium-derived relaxing factor in active hyperemia of the canine diaphragm. Hussain SN, Stewart DJ, Ludemann JP, Magder S. J Appl Physiol (1985); 1992 Jun; 72(6):2393-401. PubMed ID: 1629096 [Abstract] [Full Text] [Related]
2. Regulation of baseline vascular resistance in the canine diaphragm by nitric oxide. Ward ME, Hussain SN. Br J Pharmacol; 1994 May; 112(1):65-70. PubMed ID: 8032663 [Abstract] [Full Text] [Related]
3. Role of endothelium-derived relaxing factor in reactive hyperemia in canine diaphragm. Ward ME, Magder SA, Hussain SN. J Appl Physiol (1985); 1993 Apr; 74(4):1606-12. PubMed ID: 8514674 [Abstract] [Full Text] [Related]
4. Role of nitric oxide in endotoxin-induced metabolic and vascular dysregulation of the canine diaphragm. Hussain SN. Am J Respir Crit Care Med; 1995 Aug; 152(2):683-9. PubMed ID: 7633726 [Abstract] [Full Text] [Related]
5. Activity of nitric oxide synthase in the ventilatory muscle vasculature. Hussain SN. Comp Biochem Physiol A Mol Integr Physiol; 1998 Jan; 119(1):191-201. PubMed ID: 11253785 [Abstract] [Full Text] [Related]
6. Influence of nitric oxide on vascular resistance and muscle mechanics during tetanic contractions in situ. Ameredes BT, Provenzano MA. J Appl Physiol (1985); 1999 Jul; 87(1):142-51. PubMed ID: 10409568 [Abstract] [Full Text] [Related]
7. Differential effects of nitric oxide synthesis inhibitor on rat diaphragmatic microcirculation under basal conditions and after vasodilator stimulation. Chang HY, Chen CW, Hsiue TR, Chen CR. J Formos Med Assoc; 1994 Sep; 93(9):788-96. PubMed ID: 7735009 [Abstract] [Full Text] [Related]
8. Effect of prostaglandins and nitric oxide on basal blood flow and acetylcholine-induced vasodilation in rat diaphragmatic microcirculation. Chang HY, Chen CW, Hsiue TR, Chen CR. J Formos Med Assoc; 1995 Jun; 94(6):332-40. PubMed ID: 7549553 [Abstract] [Full Text] [Related]
9. Contribution of nitric oxide to coronary vasodilation during hypercapnic acidosis. Gurevicius J, Salem MR, Metwally AA, Silver JM, Crystal GJ. Am J Physiol; 1995 Jan; 268(1 Pt 2):H39-47. PubMed ID: 7530920 [Abstract] [Full Text] [Related]
15. EDRF and norepinephrine-induced vasodilation in the canine coronary circulation. Van Bibber R, Traub O, Kroll K, Feigl EO. Am J Physiol; 1995 May; 268(5 Pt 2):H1973-81. PubMed ID: 7771547 [Abstract] [Full Text] [Related]
16. Role of endothelium-derived relaxing factor in the in vivo renal vascular action of adenosine in dogs. Okumura M, Miura K, Yamashita Y, Yukimura T, Yamamoto K. J Pharmacol Exp Ther; 1992 Mar; 260(3):1262-7. PubMed ID: 1545391 [Abstract] [Full Text] [Related]
17. Effect of an arginine analogue on acetylcholine-induced coronary microvascular dilatation in dogs. Komaru T, Lamping KG, Eastham CL, Harrison DG, Marcus ML, Dellsperger KC. Am J Physiol; 1991 Dec; 261(6 Pt 2):H2001-7. PubMed ID: 1750548 [Abstract] [Full Text] [Related]
18. Endothelium-dependent dilation to L-arginine in isolated rat skeletal muscle arterioles. Sun D, Messina EJ, Koller A, Wolin MS, Kaley G. Am J Physiol; 1992 Apr; 262(4 Pt 2):H1211-6. PubMed ID: 1566902 [Abstract] [Full Text] [Related]
19. Effects of oxygen and exogenous L-arginine on EDRF activity in fetal pulmonary circulation. McQueston JA, Cornfield DN, McMurtry IF, Abman SH. Am J Physiol; 1993 Mar; 264(3 Pt 2):H865-71. PubMed ID: 8456989 [Abstract] [Full Text] [Related]
20. Role of endothelium-derived relaxing factor on coronary blood flow regulation in the dog. Domenech R, Macho P, Penna M, Schwarze H, Huidobro-Toro JP, Thumala A. Eur J Pharmacol; 1993 Jul 06; 238(1):53-8. PubMed ID: 8405082 [Abstract] [Full Text] [Related] Page: [Next] [New Search]