These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
165 related items for PubMed ID: 1629770
21. Effects of 5-hydroxytryptamine on the afterhyperpolarization, spike frequency regulation, and oscillatory membrane properties in lamprey spinal cord neurons. Wallén P, Buchanan JT, Grillner S, Hill RH, Christenson J, Hökfelt T. J Neurophysiol; 1989 Apr; 61(4):759-68. PubMed ID: 2542472 [Abstract] [Full Text] [Related]
22. Activity-dependent modulation of adaptation produces a constant burst proportion in a model of the lamprey spinal locomotor generator. Ullström M, Kotaleski JH, Tegnér J, Aurell E, Grillner S, Lansner A. Biol Cybern; 1998 Jul; 79(1):1-14. PubMed ID: 9742673 [Abstract] [Full Text] [Related]
23. Commissural interneurons in rhythm generation and intersegmental coupling in the lamprey spinal cord. Buchanan JT. J Neurophysiol; 1999 May; 81(5):2037-45. PubMed ID: 10322045 [Abstract] [Full Text] [Related]
24. A computer-based model for realistic simulations of neural networks. II. The segmental network generating locomotor rhythmicity in the lamprey. Wallén P, Ekeberg O, Lansner A, Brodin L, Tråvén H, Grillner S. J Neurophysiol; 1992 Dec; 68(6):1939-50. PubMed ID: 1283406 [Abstract] [Full Text] [Related]
25. Serotonin modulates the central pattern generator for locomotion in the isolated lamprey spinal cord. Harris-Warrick RM, Cohen AH. J Exp Biol; 1985 May; 116():27-46. PubMed ID: 4056654 [Abstract] [Full Text] [Related]
27. Fictive locomotion in the lamprey spinal cord in vitro compared with swimming in the intact and spinal animal. Wallén P, Williams TL. J Physiol; 1984 Feb; 347():225-39. PubMed ID: 6142945 [Abstract] [Full Text] [Related]
28. Correlational analysis of fictive swimming in the lamprey reveals strong functional intersegmental coupling. Mellen N, Kiemel T, Cohen AH. J Neurophysiol; 1995 Mar; 73(3):1020-30. PubMed ID: 7608752 [Abstract] [Full Text] [Related]
29. Computer simulations of NMDA and non-NMDA receptor-mediated synaptic drive: sensory and supraspinal modulation of neurons and small networks. Tråvén HG, Brodin L, Lansner A, Ekeberg O, Wallén P, Grillner S. J Neurophysiol; 1993 Aug; 70(2):695-709. PubMed ID: 8105036 [Abstract] [Full Text] [Related]
30. Coordination of spinal locomotor activity in the lamprey: long-distance coupling of spinal oscillators. McClellan AD, Hagevik A. Exp Brain Res; 1999 May; 126(1):93-108. PubMed ID: 10333010 [Abstract] [Full Text] [Related]
31. [Effect of serotonin on isolated cells with the various functionality from the lamprey spinal cord]. Batueva IV, Buchanan JT, Veselkin NP, Suderevskaia EI, Tsvetkov EA. Ross Fiziol Zh Im I M Sechenova; 2000 Jul; 86(7):835-53. PubMed ID: 11011369 [Abstract] [Full Text] [Related]
32. Endogenous dopaminergic modulation of the lamprey spinal locomotor network. Svensson E, Woolley J, Wikström M, Grillner S. Brain Res; 2003 Apr 25; 970(1-2):1-8. PubMed ID: 12706243 [Abstract] [Full Text] [Related]
33. 5-HT and dopamine modulates CaV1.3 calcium channels involved in postinhibitory rebound in the spinal network for locomotion in lamprey. Wang D, Grillner S, Wallén P. J Neurophysiol; 2011 Mar 25; 105(3):1212-24. PubMed ID: 21228305 [Abstract] [Full Text] [Related]
34. Calcium influx-independent depression of transmitter release by 5-HT at lamprey spinal cord synapses. Takahashi M, Freed R, Blackmer T, Alford S. J Physiol; 2001 Apr 15; 532(Pt 2):323-36. PubMed ID: 11306653 [Abstract] [Full Text] [Related]
35. Central modulation of stretch receptor neurons during fictive locomotion in lamprey. Vinay L, Barthe JY, Grillner S. J Neurophysiol; 1996 Aug 15; 76(2):1224-35. PubMed ID: 8871232 [Abstract] [Full Text] [Related]
36. Activity of fin muscles and fin motoneurons during swimming motor pattern in the lamprey. Mentel T, Krause A, Pabst M, El Manira A, Büschges A. Eur J Neurosci; 2006 Apr 15; 23(8):2012-26. PubMed ID: 16630049 [Abstract] [Full Text] [Related]
37. Flexibility in the patterning and control of axial locomotor networks in lamprey. Buchanan JT. Integr Comp Biol; 2011 Dec 15; 51(6):869-78. PubMed ID: 21743089 [Abstract] [Full Text] [Related]
38. Spino-bulbar neurons convey information to the brainstem about different phases of the locomotor cycle in the lamprey. Vinay L, Grillner S. Brain Res; 1992 Jun 05; 582(1):134-8. PubMed ID: 1323370 [Abstract] [Full Text] [Related]
39. Effects of flufenamic acid on fictive locomotion, plateau potentials, calcium channels and NMDA receptors in the lamprey spinal cord. Wang D, Grillner S, Wallén P. Neuropharmacology; 2006 Nov 05; 51(6):1038-46. PubMed ID: 16919683 [Abstract] [Full Text] [Related]
40. The spino-reticulo-spinal loop can slow down the NMDA-activated spinal locomotor network in lamprey. Vinay L, Grillner S. Neuroreport; 1993 Jun 05; 4(6):609-12. PubMed ID: 8394151 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]