These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


784 related items for PubMed ID: 16305807

  • 1. The in vitro hydrolysis of poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol).
    Loh XJ, Tan KK, Li X, Li J.
    Biomaterials; 2006 Mar; 27(9):1841-50. PubMed ID: 16305807
    [Abstract] [Full Text] [Related]

  • 2. Hydrolytic degradation and protein release studies of thermogelling polyurethane copolymers consisting of poly[(R)-3-hydroxybutyrate], poly(ethylene glycol), and poly(propylene glycol).
    Loh XJ, Goh SH, Li J.
    Biomaterials; 2007 Oct; 28(28):4113-23. PubMed ID: 17573109
    [Abstract] [Full Text] [Related]

  • 3. Poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol) as candidate biomaterials: characterization and mechanical property study.
    Li X, Loh XJ, Wang K, He C, Li J.
    Biomacromolecules; 2005 Oct; 6(5):2740-7. PubMed ID: 16153114
    [Abstract] [Full Text] [Related]

  • 4. Synthesis, characterization and biocompatibility of biodegradable elastomeric poly(ether-ester urethane)s Based on Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and Poly(ethylene glycol) via melting polymerization.
    Li Z, Yang X, Wu L, Chen Z, Lin Y, Xu K, Chen GQ.
    J Biomater Sci Polym Ed; 2009 Oct; 20(9):1179-202. PubMed ID: 19520007
    [Abstract] [Full Text] [Related]

  • 5. Characterization, biodegradability and blood compatibility of poly[(R)-3-hydroxybutyrate] based poly(ester-urethane)s.
    Liu Q, Cheng S, Li Z, Xu K, Chen GQ.
    J Biomed Mater Res A; 2009 Sep 15; 90(4):1162-76. PubMed ID: 18671259
    [Abstract] [Full Text] [Related]

  • 6. Synthesis, characterizations and biocompatibility of alternating block polyurethanes based on P3/4HB and PPG-PEG-PPG.
    Li G, Li P, Qiu H, Li D, Su M, Xu K.
    J Biomed Mater Res A; 2011 Jul 15; 98(1):88-99. PubMed ID: 21538829
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Synthesis, characterization and hydrolytic degradation of degradable poly(butylene terephthalate)/poly(ethylene glycol) (PBT/PEG) copolymers.
    Chao G, Fan L, Jia W, Qian Z, Gu Y, Liu C, Ni X, Li J, Deng H, Gong C, Gou M, Lei K, Huang A, Huang C, Yang J, Kan B, Tu M.
    J Mater Sci Mater Med; 2007 Mar 15; 18(3):449-55. PubMed ID: 17334695
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. New biodegradable thermogelling copolymers having very low gelation concentrations.
    Loh XJ, Goh SH, Li J.
    Biomacromolecules; 2007 Feb 15; 8(2):585-93. PubMed ID: 17291082
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Synthesis and water-swelling of thermo-responsive poly(ester urethane)s containing poly(epsilon-caprolactone), poly(ethylene glycol) and poly(propylene glycol).
    Loh XJ, Colin Sng KB, Li J.
    Biomaterials; 2008 Aug 15; 29(22):3185-94. PubMed ID: 18456319
    [Abstract] [Full Text] [Related]

  • 13. Synthesis, characterization, and morphology studies of biodegradable amphiphilic poly[(R)-3-hydroxybutyrate]-alt-poly(ethylene glycol) multiblock copolymers.
    Li X, Liu KL, Li J, Tan EP, Chan LM, Lim CT, Goh SH.
    Biomacromolecules; 2006 Nov 15; 7(11):3112-9. PubMed ID: 17096539
    [Abstract] [Full Text] [Related]

  • 14. The degradation and biocompatibility of pH-sensitive biodegradable polyurethanes for intracellular multifunctional antitumor drug delivery.
    Zhou L, Liang D, He X, Li J, Tan H, Li J, Fu Q, Gu Q.
    Biomaterials; 2012 Mar 15; 33(9):2734-45. PubMed ID: 22236829
    [Abstract] [Full Text] [Related]

  • 15. Synthesis, degradation, and cytotoxicity of multiblock poly(epsilon-caprolactone urethane)s containing gemini quaternary ammonium cationic groups.
    Ding M, Li J, Fu X, Zhou J, Tan H, Gu Q, Fu Q.
    Biomacromolecules; 2009 Oct 12; 10(10):2857-65. PubMed ID: 19817491
    [Abstract] [Full Text] [Related]

  • 16. Biodegradable hyperbranched amphiphilic polyurethane multiblock copolymers consisting of poly(propylene glycol), poly(ethylene glycol), and polycaprolactone as in situ thermogels.
    Li Z, Zhang Z, Liu KL, Ni X, Li J.
    Biomacromolecules; 2012 Dec 10; 13(12):3977-89. PubMed ID: 23167676
    [Abstract] [Full Text] [Related]

  • 17. Synthesis, characterizations, and biocompatibility of block poly(ester-urethane)s based on biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3/4HB) and poly(ε-caprolactone).
    Qiu H, Li D, Chen X, Fan K, Ou W, Chen KC, Xu K.
    J Biomed Mater Res A; 2013 Jan 10; 101(1):75-86. PubMed ID: 22826204
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. The effect of epsilon-caproyl/D,L-lactyl unit composition on the hydrolytic degradation of poly(D,L-lactide-ran-epsilon-caprolactone)-poly(ethylene glycol)-poly(D,L-lactide-ran-epsilon-caprolactone).
    Cho H, An J.
    Biomaterials; 2006 Feb 10; 27(4):544-52. PubMed ID: 16099497
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 40.