These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
195 related items for PubMed ID: 16311442
1. Spatiotemporal pattern of the extracranial component of the rheoencephalographic signal. Pérez JJ, Guijarro E, Sancho J. Physiol Meas; 2005 Dec; 26(6):925-38. PubMed ID: 16311442 [Abstract] [Full Text] [Related]
2. Influence of the scalp thickness on the intracranial contribution to rheoencephalography. Pérez JJ, Guijarro E, Barcia JA. Phys Med Biol; 2004 Sep 21; 49(18):4383-94. PubMed ID: 15509072 [Abstract] [Full Text] [Related]
3. To what extent is the bipolar rheoencephalographic signal contaminated by scalp blood flow? A clinical study to quantify its extra and non-extracranial components. Perez JJ. Biomed Eng Online; 2014 Sep 06; 13():131. PubMed ID: 25192886 [Abstract] [Full Text] [Related]
4. The electrical impedance of pulsatile blood flowing through rigid tubes: a theoretical investigation. Gaw RL, Cornish BH, Thomas BJ. IEEE Trans Biomed Eng; 2008 Feb 06; 55(2 Pt 1):721-7. PubMed ID: 18270009 [Abstract] [Full Text] [Related]
5. Changes in the intracranial rheoencephalogram at lower limit of cerebral blood flow autoregulation. Bodo M, Pearce FJ, Baranyi L, Armonda RA. Physiol Meas; 2005 Apr 06; 26(2):S1-17. PubMed ID: 15798222 [Abstract] [Full Text] [Related]
6. Quantification of intracranial contribution to rheoencephalography by a numerical model of the head. Pérez JJ, Guijarro E, Barcia JA. Clin Neurophysiol; 2000 Jul 06; 111(7):1306-14. PubMed ID: 10880807 [Abstract] [Full Text] [Related]
7. Factors limiting the application of electrical impedance tomography for identification of regional conductivity changes using scalp electrodes during epileptic seizures in humans. Fabrizi L, Sparkes M, Horesh L, Perez-Juste Abascal JF, McEwan A, Bayford RH, Elwes R, Binnie CD, Holder DS. Physiol Meas; 2006 May 06; 27(5):S163-74. PubMed ID: 16636408 [Abstract] [Full Text] [Related]
8. Estimation of coherence between blood flow and spontaneous EEG activity in neonates. Simpson DM, BoteroRosas DA, Infantosi AF. IEEE Trans Biomed Eng; 2005 May 06; 52(5):852-8. PubMed ID: 15887534 [Abstract] [Full Text] [Related]
9. Impedance changes recorded with scalp electrodes during visual evoked responses: implications for Electrical Impedance Tomography of fast neural activity. Gilad O, Holder DS. Neuroimage; 2009 Aug 15; 47(2):514-22. PubMed ID: 19426819 [Abstract] [Full Text] [Related]
10. The contribution of blood-flow-induced conductivity changes to measured impedance. Wtorek J, Poliński A. IEEE Trans Biomed Eng; 2005 Jan 15; 52(1):41-9. PubMed ID: 15651563 [Abstract] [Full Text] [Related]
11. Design of electrode array for impedance measurement of lesions in arteries. Cho S, Thielecke H. Physiol Meas; 2005 Apr 15; 26(2):S19-26. PubMed ID: 15798232 [Abstract] [Full Text] [Related]
12. Use of anisotropic modelling in electrical impedance tomography: description of method and preliminary assessment of utility in imaging brain function in the adult human head. Abascal JF, Arridge SR, Atkinson D, Horesh R, Fabrizi L, De Lucia M, Horesh L, Bayford RH, Holder DS. Neuroimage; 2008 Nov 01; 43(2):258-68. PubMed ID: 18694835 [Abstract] [Full Text] [Related]
13. Determination of Cole parameters in multiple frequency bioelectrical impedance analysis using only the measurement of impedances. Ward LC, Essex T, Cornish BH. Physiol Meas; 2006 Sep 01; 27(9):839-50. PubMed ID: 16868350 [Abstract] [Full Text] [Related]
14. Probabilistic forward model for electroencephalography source analysis. Plis SM, George JS, Jun SC, Ranken DM, Volegov PL, Schmidt DM. Phys Med Biol; 2007 Sep 07; 52(17):5309-27. PubMed ID: 17762088 [Abstract] [Full Text] [Related]
15. Extraction of the intracranial component from the rheoencephalographic signal: a new approach. Perez JJ, Guijarro E, Sancho J, Navarre A. Conf Proc IEEE Eng Med Biol Soc; 2006 Sep 07; 2006():6064-7. PubMed ID: 17945931 [Abstract] [Full Text] [Related]
16. Assessment of 1-lead and 2-lead electrode patterns in electrical impedance endotomography. Fournier-Desseux A, Jossinet J. Physiol Meas; 2005 Aug 07; 26(4):337-49. PubMed ID: 15886430 [Abstract] [Full Text] [Related]
17. Does combing the scalp reduce scalp electrode impedances? Mahajan Y, McArthur G. J Neurosci Methods; 2010 May 15; 188(2):287-9. PubMed ID: 20211649 [Abstract] [Full Text] [Related]
18. Cole electrical impedance model--a critique and an alternative. Grimnes S, Martinsen OG. IEEE Trans Biomed Eng; 2005 Jan 15; 52(1):132-5. PubMed ID: 15651574 [Abstract] [Full Text] [Related]
19. Three-block electrical model of renal impedance. Hsu TL, Hsiu H, Chao PT, Li SP, Wang WK, Wang YY. Physiol Meas; 2005 Aug 15; 26(4):387-99. PubMed ID: 15886434 [Abstract] [Full Text] [Related]
20. Time and spatial invariance of impedance signals in limbs of healthy subjects by time-frequency analysis. Collette M, Humeau A, Abraham P. Ann Biomed Eng; 2008 Mar 15; 36(3):444-51. PubMed ID: 18205048 [Abstract] [Full Text] [Related] Page: [Next] [New Search]