These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


509 related items for PubMed ID: 16321097

  • 1. Characterization of the TIP4P-Ew water model: vapor pressure and boiling point.
    Horn HW, Swope WC, Pitera JW.
    J Chem Phys; 2005 Nov 15; 123(19):194504. PubMed ID: 16321097
    [Abstract] [Full Text] [Related]

  • 2. Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew, TIP4P/2005, and TIP4P/ice.
    Vega C, Abascal JL, Nezbeda I.
    J Chem Phys; 2006 Jul 21; 125(3):34503. PubMed ID: 16863358
    [Abstract] [Full Text] [Related]

  • 3. Surface tension of the most popular models of water by using the test-area simulation method.
    Vega C, de Miguel E.
    J Chem Phys; 2007 Apr 21; 126(15):154707. PubMed ID: 17461659
    [Abstract] [Full Text] [Related]

  • 4. Two-phase thermodynamic model for efficient and accurate absolute entropy of water from molecular dynamics simulations.
    Lin ST, Maiti PK, Goddard WA.
    J Phys Chem B; 2010 Jun 24; 114(24):8191-8. PubMed ID: 20504009
    [Abstract] [Full Text] [Related]

  • 5. Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew.
    Horn HW, Swope WC, Pitera JW, Madura JD, Dick TJ, Hura GL, Head-Gordon T.
    J Chem Phys; 2004 May 22; 120(20):9665-78. PubMed ID: 15267980
    [Abstract] [Full Text] [Related]

  • 6. Molecular dynamics simulations of vapor/liquid coexistence using the nonpolarizable water models.
    Sakamaki R, Sum AK, Narumi T, Yasuoka K.
    J Chem Phys; 2011 Mar 28; 134(12):124708. PubMed ID: 21456696
    [Abstract] [Full Text] [Related]

  • 7. The melting temperature of the most common models of water.
    Vega C, Sanz E, Abascal JL.
    J Chem Phys; 2005 Mar 15; 122(11):114507. PubMed ID: 15836229
    [Abstract] [Full Text] [Related]

  • 8. Quantum effects in liquid water and ice: model dependence.
    Hernández de la Peña L, Kusalik PG.
    J Chem Phys; 2006 Aug 07; 125(5):054512. PubMed ID: 16942231
    [Abstract] [Full Text] [Related]

  • 9. Capillary waves at the liquid-vapor interface and the surface tension of water.
    Ismail AE, Grest GS, Stevens MJ.
    J Chem Phys; 2006 Jul 07; 125(1):014702. PubMed ID: 16863319
    [Abstract] [Full Text] [Related]

  • 10. Relation between the melting temperature and the temperature of maximum density for the most common models of water.
    Vega C, Abascal JL.
    J Chem Phys; 2005 Oct 08; 123(14):144504. PubMed ID: 16238404
    [Abstract] [Full Text] [Related]

  • 11. The phase diagram of water at high pressures as obtained by computer simulations of the TIP4P/2005 model: the appearance of a plastic crystal phase.
    Aragones JL, Conde MM, Noya EG, Vega C.
    Phys Chem Chem Phys; 2009 Jan 21; 11(3):543-55. PubMed ID: 19283272
    [Abstract] [Full Text] [Related]

  • 12. Critical comparison of classical and quantum mechanical treatments of the phase equilibria of water.
    Wick CD, Schenter GK.
    J Chem Phys; 2006 Mar 21; 124(11):114505. PubMed ID: 16555899
    [Abstract] [Full Text] [Related]

  • 13. Calculation of liquid water-hydrate-methane vapor phase equilibria from molecular simulations.
    Jensen L, Thomsen K, von Solms N, Wierzchowski S, Walsh MR, Koh CA, Sloan ED, Wu DT, Sum AK.
    J Phys Chem B; 2010 May 06; 114(17):5775-82. PubMed ID: 20392117
    [Abstract] [Full Text] [Related]

  • 14. Clusters of classical water models.
    Kiss PT, Baranyai A.
    J Chem Phys; 2009 Nov 28; 131(20):204310. PubMed ID: 19947683
    [Abstract] [Full Text] [Related]

  • 15. Melting temperature of ice Ih calculated from coexisting solid-liquid phases.
    Wang J, Yoo S, Bai J, Morris JR, Zeng XC.
    J Chem Phys; 2005 Jul 15; 123(3):36101. PubMed ID: 16080767
    [Abstract] [Full Text] [Related]

  • 16. Properties of ices at 0 K: a test of water models.
    Aragones JL, Noya EG, Abascal JL, Vega C.
    J Chem Phys; 2007 Oct 21; 127(15):154518. PubMed ID: 17949184
    [Abstract] [Full Text] [Related]

  • 17. Liquid-liquid phase transitions in supercooled water studied by computer simulations of various water models.
    Brovchenko I, Geiger A, Oleinikova A.
    J Chem Phys; 2005 Jul 22; 123(4):044515. PubMed ID: 16095377
    [Abstract] [Full Text] [Related]

  • 18. The melting point of ice Ih for common water models calculated from direct coexistence of the solid-liquid interface.
    García Fernández R, Abascal JL, Vega C.
    J Chem Phys; 2006 Apr 14; 124(14):144506. PubMed ID: 16626213
    [Abstract] [Full Text] [Related]

  • 19. Limitations of the rigid planar nonpolarizable models of water.
    Baranyai A, Bartók A, Chialvo AA.
    J Chem Phys; 2006 Feb 21; 124(7):74507. PubMed ID: 16497057
    [Abstract] [Full Text] [Related]

  • 20. Free energy of liquid water from a computer simulation via cell theory.
    Henchman RH.
    J Chem Phys; 2007 Feb 14; 126(6):064504. PubMed ID: 17313226
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 26.