These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


509 related items for PubMed ID: 16321097

  • 21. Thermal conductivity of methane hydrate from experiment and molecular simulation.
    Rosenbaum EJ, English NJ, Johnson JK, Shaw DW, Warzinski RP.
    J Phys Chem B; 2007 Nov 22; 111(46):13194-205. PubMed ID: 17967008
    [Abstract] [Full Text] [Related]

  • 22. Temperature dependence of the hydrophobic hydration and interaction of simple solutes: an examination of five popular water models.
    Paschek D.
    J Chem Phys; 2004 Apr 08; 120(14):6674-90. PubMed ID: 15267560
    [Abstract] [Full Text] [Related]

  • 23. Simulating vapor-liquid nucleation of water: A combined histogram-reweighting and aggregation-volume-bias Monte Carlo investigation for fixed-charge and polarizable models.
    Chen B, Siepmann JI, Klein ML.
    J Phys Chem A; 2005 Feb 17; 109(6):1137-45. PubMed ID: 16833423
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Thermodynamic and structural characterization of the transformation from a metastable low-density to a very high-density form of supercooled TIP4P-Ew model water.
    Paschek D, Rüppert A, Geiger A.
    Chemphyschem; 2008 Dec 22; 9(18):2737-41. PubMed ID: 19035392
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Heat capacity of water: A signature of nuclear quantum effects.
    Vega C, Conde MM, McBride C, Abascal JL, Noya EG, Ramirez R, Sesé LM.
    J Chem Phys; 2010 Jan 28; 132(4):046101. PubMed ID: 20113070
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. An internally consistent method for the molecular dynamics simulation of the surface tension: application to some TIP4P-type models of water.
    Mountain RD.
    J Phys Chem B; 2009 Jan 15; 113(2):482-6. PubMed ID: 19086867
    [Abstract] [Full Text] [Related]

  • 32. Properties of water along the liquid-vapor coexistence curve via molecular dynamics simulations using the polarizable TIP4P-QDP-LJ water model.
    Bauer BA, Patel S.
    J Chem Phys; 2009 Aug 28; 131(8):084709. PubMed ID: 19725623
    [Abstract] [Full Text] [Related]

  • 33. Assessing thermodynamic-dynamic relationships for waterlike liquids.
    Johnson ME, Head-Gordon T.
    J Chem Phys; 2009 Jun 07; 130(21):214510. PubMed ID: 19508079
    [Abstract] [Full Text] [Related]

  • 34. Quantum effects in ice Ih.
    Hernández de la Peña L, Gulam Razul MS, Kusalik PG.
    J Chem Phys; 2005 Oct 08; 123(14):144506. PubMed ID: 16238406
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. Quantum path-integral study of the phase diagram and isotope effects of neon.
    Ramírez R, Herrero CP.
    J Chem Phys; 2008 Nov 28; 129(20):204502. PubMed ID: 19045868
    [Abstract] [Full Text] [Related]

  • 39. The thermodynamic and ground state properties of the TIP4P water octamer.
    Asare E, Musah AR, Curotto E, Freeman DL, Doll JD.
    J Chem Phys; 2009 Nov 14; 131(18):184508. PubMed ID: 19916613
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 26.