These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
651 related items for PubMed ID: 16322258
41. Enhanced androgen receptor signaling correlates with the androgen-refractory growth in a newly established MDA PCa 2b-hr human prostate cancer cell subline. Hara T, Nakamura K, Araki H, Kusaka M, Yamaoka M. Cancer Res; 2003 Sep 01; 63(17):5622-8. PubMed ID: 14500404 [Abstract] [Full Text] [Related]
42. Overexpression of Fn14 promotes androgen-independent prostate cancer progression through MMP-9 and correlates with poor treatment outcome. Huang M, Narita S, Tsuchiya N, Ma Z, Numakura K, Obara T, Tsuruta H, Saito M, Inoue T, Horikawa Y, Satoh S, Habuchi T. Carcinogenesis; 2011 Nov 01; 32(11):1589-96. PubMed ID: 21828059 [Abstract] [Full Text] [Related]
43. In vivo progression of LAPC-9 and LNCaP prostate cancer models to androgen independence is associated with increased expression of insulin-like growth factor I (IGF-I) and IGF-I receptor (IGF-IR). Nickerson T, Chang F, Lorimer D, Smeekens SP, Sawyers CL, Pollak M. Cancer Res; 2001 Aug 15; 61(16):6276-80. PubMed ID: 11507082 [Abstract] [Full Text] [Related]
44. Inhibition of human prostate cancer xenograft growth by 125I labeled triple-helix forming oligonucleotide directed against androgen receptor. Zhang Y, Ma Y, Lu HP, Gao JH, Liang CS, Liu CZ, Zou JT, Wang HQ. Chin Med J (Engl); 2008 Nov 20; 121(22):2284-9. PubMed ID: 19080333 [Abstract] [Full Text] [Related]
45. Timing is everything: preclinical evidence supporting simultaneous rather than sequential chemohormonal therapy for prostate cancer. Eigl BJ, Eggener SE, Baybik J, Ettinger S, Chi KN, Nelson C, Wang Z, Gleave ME. Clin Cancer Res; 2005 Jul 01; 11(13):4905-11. PubMed ID: 16000589 [Abstract] [Full Text] [Related]
46. Constitutive activation of Stat3 in human prostate tumors and cell lines: direct inhibition of Stat3 signaling induces apoptosis of prostate cancer cells. Mora LB, Buettner R, Seigne J, Diaz J, Ahmad N, Garcia R, Bowman T, Falcone R, Fairclough R, Cantor A, Muro-Cacho C, Livingston S, Karras J, Pow-Sang J, Jove R. Cancer Res; 2002 Nov 15; 62(22):6659-66. PubMed ID: 12438264 [Abstract] [Full Text] [Related]
47. Interleukin-6 protects LNCaP cells from apoptosis induced by androgen deprivation through the Stat3 pathway. Lee SO, Lou W, Johnson CS, Trump DL, Gao AC. Prostate; 2004 Aug 01; 60(3):178-86. PubMed ID: 15176047 [Abstract] [Full Text] [Related]
49. The TRPS1 transcription factor: androgenic regulation in prostate cancer and high expression in breast cancer. Chang GT, Jhamai M, van Weerden WM, Jenster G, Brinkmann AO. Endocr Relat Cancer; 2004 Dec 01; 11(4):815-22. PubMed ID: 15613454 [Abstract] [Full Text] [Related]
50. Galiellalactone is a novel therapeutic candidate against hormone-refractory prostate cancer expressing activated Stat3. Hellsten R, Johansson M, Dahlman A, Dizeyi N, Sterner O, Bjartell A. Prostate; 2008 Feb 15; 68(3):269-80. PubMed ID: 18163422 [Abstract] [Full Text] [Related]
52. Adenovirus-mediated tissue-targeted expression of a caspase-9-based artificial death switch for the treatment of prostate cancer. Xie X, Zhao X, Liu Y, Zhang J, Matusik RJ, Slawin KM, Spencer DM. Cancer Res; 2001 Sep 15; 61(18):6795-804. PubMed ID: 11559553 [Abstract] [Full Text] [Related]
53. Nitroxide tempo, a small molecule, induces apoptosis in prostate carcinoma cells and suppresses tumor growth in athymic mice. Suy S, Mitchell JB, Samuni A, Mueller S, Kasid U. Cancer; 2005 Mar 15; 103(6):1302-13. PubMed ID: 15685617 [Abstract] [Full Text] [Related]
54. TP53INP1 as new therapeutic target in castration-resistant prostate cancer. Giusiano S, Baylot V, Andrieu C, Fazli L, Gleave M, Iovanna JL, Taranger-Charpin C, Garcia S, Rocchi P. Prostate; 2012 Sep 01; 72(12):1286-94. PubMed ID: 22213058 [Abstract] [Full Text] [Related]
55. Androgen withdrawal inhibits tumor growth and is associated with decrease in angiogenesis and VEGF expression in androgen-independent CWR22Rv1 human prostate cancer model. Cheng L, Zhang S, Sweeney CJ, Kao C, Gardner TA, Eble JN. Anticancer Res; 2004 Sep 01; 24(4):2135-40. PubMed ID: 15330153 [Abstract] [Full Text] [Related]
56. Differential phosphoprotein levels and pathway analysis identify the transition mechanism of LNCaP cells into androgen-independent cells. Wang HQ, Yang B, Xu CL, Wang LH, Zhang YX, Xu B, Ji JT, Sun YH. Prostate; 2010 Apr 01; 70(5):508-17. PubMed ID: 19937597 [Abstract] [Full Text] [Related]
57. [Effects of anti-gene and antisense therapeutics on human prostate cancer xenograft in nude mice]. Zhang Y, Ma Y, Lu HP, Zhou XF, Xie Y, Gao JH, Liang CS. Zhonghua Yi Xue Za Zhi; 2008 Jul 29; 88(29):2073-6. PubMed ID: 19080439 [Abstract] [Full Text] [Related]
58. Androgen deprivation of the PC-310 [correction of prohormone convertase-310] human prostate cancer model system induces neuroendocrine differentiation. Jongsma J, Oomen MH, Noordzij MA, Van Weerden WM, Martens GJ, van der Kwast TH, Schröder FH, van Steenbrugge GJ. Cancer Res; 2000 Feb 01; 60(3):741-8. PubMed ID: 10676662 [Abstract] [Full Text] [Related]
59. Optimal timing and dosage of chemotherapy as a combined treatment with androgen withdrawal in the human prostate LNCaP tumour model. Miyake H, Hara S, Arakawa S, Kamidono S, Hara I. Br J Cancer; 2001 Mar 23; 84(6):859-63. PubMed ID: 11259104 [Abstract] [Full Text] [Related]
60. Antisense TRPM-2 oligodeoxynucleotides chemosensitize human androgen-independent PC-3 prostate cancer cells both in vitro and in vivo. Miyake H, Chi KN, Gleave ME. Clin Cancer Res; 2000 May 23; 6(5):1655-63. PubMed ID: 10815883 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]