These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1100 related items for PubMed ID: 16325866
1. Glucose-6-phosphate dehydrogenase activity and NADPH/NADP+ ratio in liver and pancreas are dependent on the severity of hyperglycemia in rat. Díaz-Flores M, Ibáñez-Hernández MA, Galván RE, Gutiérrez M, Durán-Reyes G, Medina-Navarro R, Pascoe-Lira D, Ortega-Camarillo C, Vilar-Rojas C, Cruz M, Baiza-Gutman LA. Life Sci; 2006 Apr 25; 78(22):2601-7. PubMed ID: 16325866 [Abstract] [Full Text] [Related]
2. Effect of dietary taurine supplementation on GSH and NAD(P)-redox status, lipid peroxidation, and energy metabolism in diabetic precataractous lens. Obrosova IG, Stevens MJ. Invest Ophthalmol Vis Sci; 1999 Mar 25; 40(3):680-8. PubMed ID: 10067971 [Abstract] [Full Text] [Related]
3. Circadian variations in the activities of 6-phosphogluconate dehydrogenase and glucose-6-phosphate dehydrogenase in the liver of control and streptozotocin-induced diabetic rats. Ulusu NN, Ozbey G, Tandogan B, Gunes A, Durakoglugil DB, Karasu C, Uluoglu C, Zengil H. Chronobiol Int; 2005 Mar 25; 22(4):667-77. PubMed ID: 16147898 [Abstract] [Full Text] [Related]
4. Spironolactone improves nephropathy by enhancing glucose-6-phosphate dehydrogenase activity and reducing oxidative stress in diabetic hypertensive rat. Pessôa BS, Peixoto EB, Papadimitriou A, Lopes de Faria JM, Lopes de Faria JB. J Renin Angiotensin Aldosterone Syst; 2012 Mar 25; 13(1):56-66. PubMed ID: 21987533 [Abstract] [Full Text] [Related]
5. Effect of SkQ1 on Activity of the Glutathione System and NADPH-Generating Enzymes in an Experimental Model of Hyperglycemia. Voronkova YG, Popova TN, Agarkov AA, Zinovkin RA. Biochemistry (Mosc); 2015 Dec 25; 80(12):1614-21. PubMed ID: 26638687 [Abstract] [Full Text] [Related]
6. 11beta-Hydroxysteroid dehydrogenase 1 reductase activity is dependent on a high ratio of NADPH/NADP(+) and is stimulated by extracellular glucose. Dzyakanchuk AA, Balázs Z, Nashev LG, Amrein KE, Odermatt A. Mol Cell Endocrinol; 2009 Mar 25; 301(1-2):137-41. PubMed ID: 18778749 [Abstract] [Full Text] [Related]
7. Glucose-6-phosphate dehydrogenase and NADPH-consuming enzymes in the rat olfactory bulb. Biagiotti E, Ferri P, Dringen R, Del Grande P, Ninfali P. J Neurosci Res; 2005 May 01; 80(3):434-41. PubMed ID: 15795931 [Abstract] [Full Text] [Related]
8. Nicotinamide prevents sweet beverage-induced hepatic steatosis in rats by regulating the G6PD, NADPH/NADP+ and GSH/GSSG ratios and reducing oxidative and inflammatory stress. Mejía SÁ, Gutman LAB, Camarillo CO, Navarro RM, Becerra MCS, Santana LD, Cruz M, Pérez EH, Flores MD. Eur J Pharmacol; 2018 Jan 05; 818():499-507. PubMed ID: 29069580 [Abstract] [Full Text] [Related]
9. The effect of the sulfonylurea glyburide on glutathione-S-transferase and glucose-6-phosphate dehydrogenase in streptozotocin-induced diabetic rat liver. Bugdayci G, Altan N, Sancak B, Bukan N, Kosova F. Acta Diabetol; 2006 Dec 05; 43(4):131-4. PubMed ID: 17211564 [Abstract] [Full Text] [Related]
10. NADPH-consuming enzymes correlate with glucose-6-phosphate dehydrogenase in Purkinje cells: an immunohistochemical and enzyme histochemical study of the rat cerebellar cortex. Ferri P, Biagiotti E, Ambrogini P, Santi S, Del Grande P, Ninfali P. Neurosci Res; 2005 Feb 05; 51(2):185-97. PubMed ID: 15681036 [Abstract] [Full Text] [Related]
11. Diabetes causes inhibition of glucose-6-phosphate dehydrogenase via activation of PKA, which contributes to oxidative stress in rat kidney cortex. Xu Y, Osborne BW, Stanton RC. Am J Physiol Renal Physiol; 2005 Nov 05; 289(5):F1040-7. PubMed ID: 15956780 [Abstract] [Full Text] [Related]
12. Effects of hyperglycemia on sperm and testicular cells of Goto-Kakizaki and streptozotocin-treated rat models for diabetes. Amaral S, Moreno AJ, Santos MS, Seiça R, Ramalho-Santos J. Theriogenology; 2006 Dec 05; 66(9):2056-67. PubMed ID: 16860381 [Abstract] [Full Text] [Related]
13. Alterations of the redox state, pentose pathway and glutathione metabolism in an acute porphyria model. Their impact on heme pathway. Faut M, Paiz A, San Martín de Viale LC, Mazzetti MB. Exp Biol Med (Maywood); 2013 Feb 05; 238(2):133-43. PubMed ID: 23390166 [Abstract] [Full Text] [Related]
14. Human sperm glutathione reductase activity in situ reveals limitation in the glutathione antioxidant defense system due to supply of NADPH. Storey BT, Alvarez JG, Thompson KA. Mol Reprod Dev; 1998 Apr 05; 49(4):400-7. PubMed ID: 9508091 [Abstract] [Full Text] [Related]
15. Effect of chronic copper loading on the activity of rat liver antioxidative enzymes. Russanov EM, Kassabova TA, Konstantinova SG, Balevska PS. Acta Physiol Pharmacol Bulg; 1986 Apr 05; 12(1):51-6. PubMed ID: 3751626 [Abstract] [Full Text] [Related]
16. Effects of enzyme induction therapy on glucose and drug metabolism in obese mice model of non-insulin dependent diabetes mellitus. Karvonen I, Stengård JH, Huupponen R, Stenbäck FG, Sotaniemi EA. Diabetes Res; 1989 Feb 05; 10(2):85-92. PubMed ID: 2501061 [Abstract] [Full Text] [Related]
17. NADPH generating enzymes in Leydig cells from diabetic rats. Calvo JC, Biella de Souza Valle L, Barañao JL, Tesone M, Charreau EH. Horm Metab Res; 1979 Feb 05; 11(2):161-4. PubMed ID: 35455 [Abstract] [Full Text] [Related]
18. Prominent role of DT-diaphorase as a cellular mechanism reducing chromium(VI) and reverting its mutagenicity. De Flora S, Morelli A, Basso C, Romano M, Serra D, De Flora A. Cancer Res; 1985 Jul 05; 45(7):3188-96. PubMed ID: 4005852 [Abstract] [Full Text] [Related]
19. High activities of NADP+-dependent isocitrate dehydrogenase and malic enzyme in rabbit lens epithelial cells. Winkler BS, Solomon F. Invest Ophthalmol Vis Sci; 1988 May 05; 29(5):821-3. PubMed ID: 3366571 [Abstract] [Full Text] [Related]
20. Anti-oxidant status in an in vitro model for hyperglycaemic lens cataract formation: competition for available nicotinamide adenine dinucleotide phosphate between glutathione reduction and the polyol pathway. Hothersall JS, Muirhead RP, Taylaur CE, Jones RH. Biochem Int; 1992 Aug 05; 27(5):945-52. PubMed ID: 1417926 [Abstract] [Full Text] [Related] Page: [Next] [New Search]