These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
345 related items for PubMed ID: 1632813
1. Metabolic activation of lidocaine and covalent binding to rat liver microsomal protein. Masubuchi Y, Araki J, Narimatsu S, Suzuki T. Biochem Pharmacol; 1992 Jun 23; 43(12):2551-7. PubMed ID: 1632813 [Abstract] [Full Text] [Related]
2. Imipramine-induced inactivation of a cytochrome P450 2D enzyme in rat liver microsomes: in relation to covalent binding of its reactive intermediate. Masubuchi Y, Igarashi S, Suzuki T, Horie T, Narimatsu S. J Pharmacol Exp Ther; 1996 Nov 23; 279(2):724-31. PubMed ID: 8930177 [Abstract] [Full Text] [Related]
3. Role of the CYP2D subfamily in metabolism-dependent covalent binding of propranolol to liver microsomal protein in rats. Masubuchi Y, Narimatsu S, Hosokawa S, Suzuki T. Biochem Pharmacol; 1994 Nov 16; 48(10):1891-8. PubMed ID: 7986200 [Abstract] [Full Text] [Related]
4. Cytochrome P450 isozymes catalyzing 4-hydroxylation of parkinsonism-related compound 1,2,3,4-tetrahydroisoquinoline in rat liver microsomes. Suzuki T, Fujita S, Narimatsu S, Masubuchi Y, Tachibana M, Ohta S, Hirobe M. FASEB J; 1992 Jan 06; 6(2):771-6. PubMed ID: 1537468 [Abstract] [Full Text] [Related]
5. Biotransformation of phenol to hydroquinone and catechol by rat liver microsomes. Sawahata T, Neal RA. Mol Pharmacol; 1983 Mar 06; 23(2):453-60. PubMed ID: 6835203 [Abstract] [Full Text] [Related]
6. Regioselective contribution of the cytochrome P-450 2D subfamily to propranolol metabolism in rat liver microsomes. Masubuchi Y, Kagimoto N, Narimatsu S, Fujita S, Suzuki T. Drug Metab Dispos; 1993 Mar 06; 21(6):1012-6. PubMed ID: 7905378 [Abstract] [Full Text] [Related]
7. Metabolic activation of the serotonergic neurotoxin para-chloroamphetamine to chemically reactive intermediates by hepatic and brain microsomal preparations. Miller KJ, Anderholm DC, Ames MM. Biochem Pharmacol; 1986 May 15; 35(10):1737-42. PubMed ID: 3707603 [Abstract] [Full Text] [Related]
8. Participation of the CYP2D subfamily in lidocaine 3-hydroxylation and formation of a reactive metabolite covalently bound to liver microsomal protein in rats. Masubuchi Y, Umeda S, Igarashi S, Fujita S, Narimatsu S, Suzuki T. Biochem Pharmacol; 1993 Nov 17; 46(10):1867-9. PubMed ID: 8250975 [Abstract] [Full Text] [Related]
9. Kinetic analysis of mutual metabolic inhibition of lidocaine and propranolol in rat liver microsomes. Suzuki T, Ishida R, Matsui S, Masubuchi Y, Narimatzu S. Biochem Pharmacol; 1993 Apr 06; 45(7):1528-30. PubMed ID: 8471076 [Abstract] [Full Text] [Related]
10. Activation of 14C-toluene to covalently binding metabolites by rat liver microsomes. Pathiratne A, Puyear RL, Brammer JD. Drug Metab Dispos; 1986 Apr 06; 14(4):386-91. PubMed ID: 2873983 [Abstract] [Full Text] [Related]
11. Inactivation of rat cytochrome P450 2D enzyme by a further metabolite of 4-hydroxypropranolol, the major and active metabolite of propranolol. Narimatsu S, Arai T, Masubuchi Y, Horie T, Hosokawa M, Ueno K, Kataoka H, Yamamoto S, Ishikawa T, Cho AK. Biol Pharm Bull; 2001 Sep 06; 24(9):988-94. PubMed ID: 11558582 [Abstract] [Full Text] [Related]
12. Metabolic activation of the antidepressant tianeptine. I. Cytochrome P-450-mediated in vitro covalent binding. Letteron P, Descatoire V, Tinel M, Maurel P, Labbe G, Loeper J, Larrey D, Freneaux E, Pessayre D. Biochem Pharmacol; 1989 Oct 01; 38(19):3241-6. PubMed ID: 2818623 [Abstract] [Full Text] [Related]
13. Phenytoin metabolic activation: role of cytochrome P-450, glutathione, age, and sex in rats and mice. Roy D, Snodgrass WR. Res Commun Chem Pathol Pharmacol; 1988 Feb 01; 59(2):173-90. PubMed ID: 3358010 [Abstract] [Full Text] [Related]
14. Characterization of rat cytochrome P450 isozymes involved in the covalent binding of cyclosporin A to microsomal proteins. Sadrieh N, Thomas PE. Toxicol Appl Pharmacol; 1994 Aug 01; 127(2):222-32. PubMed ID: 8048065 [Abstract] [Full Text] [Related]
15. Characterization of covalent binding of N'-nitrosonornicotine in rat liver microsomes. Hughes MF, Brock WJ, Marion LJ, Vore M. Carcinogenesis; 1986 Jan 01; 7(1):3-8. PubMed ID: 3510749 [Abstract] [Full Text] [Related]
16. Characterization of the NADPH-dependent covalent binding of [14C]halothane to human liver microsomes: a role for cytochrome P4502E1 at low substrate concentrations. Madan A, Parkinson A. Drug Metab Dispos; 1996 Dec 01; 24(12):1307-13. PubMed ID: 8971135 [Abstract] [Full Text] [Related]
17. Mechanism of bioactivation and covalent binding of 2,4,6-trinitrotoluene. Leung KH, Yao M, Stearns R, Chiu SH. Chem Biol Interact; 1995 Jun 30; 97(1):37-51. PubMed ID: 7767940 [Abstract] [Full Text] [Related]
18. In vitro studies on the metabolism and covalent binding of [14C]1,1-dichloroethylene by mouse liver, kidney and lung. Okine LK, Gram TE. Biochem Pharmacol; 1986 Aug 15; 35(16):2789-95. PubMed ID: 3741469 [Abstract] [Full Text] [Related]
19. Oxidative activation of the thiophene ring by hepatic enzymes. Hydroxylation and formation of electrophilic metabolites during metabolism of tienilic acid and its isomer by rat liver microsomes. Dansette PM, Amar C, Smith C, Pons C, Mansuy D. Biochem Pharmacol; 1990 Mar 01; 39(5):911-8. PubMed ID: 2310416 [Abstract] [Full Text] [Related]
20. Covalent binding of 14C- and 35S-labeled thiocarbamides in rat hepatic microsomes. Decker CJ, Doerge DR. Biochem Pharmacol; 1992 Feb 18; 43(4):881-8. PubMed ID: 1371686 [Abstract] [Full Text] [Related] Page: [Next] [New Search]