These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


112 related items for PubMed ID: 16332856

  • 1. Nickel and cobalt resistance engineered in Escherichia coli by overexpression of serine acetyltransferase from the nickel hyperaccumulator plant Thlaspi goesingense.
    Freeman JL, Persans MW, Nieman K, Salt DE.
    Appl Environ Microbiol; 2005 Dec; 71(12):8627-33. PubMed ID: 16332856
    [Abstract] [Full Text] [Related]

  • 2. The metal tolerance profile of Thlaspi goesingense is mimicked in Arabidopsis thaliana heterologously expressing serine acetyl-transferase.
    Freeman JL, Salt DE.
    BMC Plant Biol; 2007 Nov 28; 7():63. PubMed ID: 18045473
    [Abstract] [Full Text] [Related]

  • 3. Differential regulation of serine acetyltransferase is involved in nickel hyperaccumulation in Thlaspi goesingense.
    Na G, Salt DE.
    J Biol Chem; 2011 Nov 25; 286(47):40423-32. PubMed ID: 21930704
    [Abstract] [Full Text] [Related]

  • 4. Increased glutathione biosynthesis plays a role in nickel tolerance in thlaspi nickel hyperaccumulators.
    Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE.
    Plant Cell; 2004 Aug 25; 16(8):2176-91. PubMed ID: 15269333
    [Abstract] [Full Text] [Related]

  • 5. Characterization of Ni-tolerant methylobacteria associated with the hyperaccumulating plant Thlaspi goesingense and description of Methylobacterium goesingense sp. nov.
    Idris R, Kuffner M, Bodrossy L, Puschenreiter M, Monchy S, Wenzel WW, Sessitsch A.
    Syst Appl Microbiol; 2006 Dec 25; 29(8):634-44. PubMed ID: 16488569
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Serine acetyltransferase from Arabidopsis thaliana can functionally complement the cysteine requirement of a cysE mutant strain of Escherichia coli.
    Murillo M, Foglia R, Diller A, Lee S, Leustek T.
    Cell Mol Biol Res; 1995 Dec 25; 41(5):425-33. PubMed ID: 8867790
    [Abstract] [Full Text] [Related]

  • 10. Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens.
    van de Mortel JE, Schat H, Moerland PD, Ver Loren van Themaat E, van der Ent S, Blankestijn H, Ghandilyan A, Tsiatsiani S, Aarts MG.
    Plant Cell Environ; 2008 Mar 25; 31(3):301-24. PubMed ID: 18088336
    [Abstract] [Full Text] [Related]

  • 11. Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense.
    Idris R, Trifonova R, Puschenreiter M, Wenzel WW, Sessitsch A.
    Appl Environ Microbiol; 2004 May 25; 70(5):2667-77. PubMed ID: 15128517
    [Abstract] [Full Text] [Related]

  • 12. High-level resistance to cobalt and nickel but probably no transenvelope efflux: Metal resistance in the Cuban Serratia marcescens strain C-1.
    Marrero J, Auling G, Coto O, Nies DH.
    Microb Ecol; 2007 Jan 25; 53(1):123-33. PubMed ID: 17186148
    [Abstract] [Full Text] [Related]

  • 13. The construction of an engineered bacterium to remove cadmium from wastewater.
    Chang S, Shu H.
    Water Sci Technol; 2014 Jan 25; 70(12):2015-21. PubMed ID: 25521138
    [Abstract] [Full Text] [Related]

  • 14. Comparison of protein variations in Thlaspi caerulescens populations from metalliferous and non-metalliferous soils.
    Visioli G, Pirondini A, Malcevschi A, Marmiroli N.
    Int J Phytoremediation; 2010 Jan 25; 12(8):805-19. PubMed ID: 21166350
    [Abstract] [Full Text] [Related]

  • 15. Cobalt stress in Escherichia coli and Salmonella enterica: molecular bases for toxicity and resistance.
    Barras F, Fontecave M.
    Metallomics; 2011 Nov 25; 3(11):1130-4. PubMed ID: 21952637
    [Abstract] [Full Text] [Related]

  • 16. The RcnRA (YohLM) system of Escherichia coli: a connection between nickel, cobalt and iron homeostasis.
    Koch D, Nies DH, Grass G.
    Biometals; 2007 Oct 25; 20(5):759-71. PubMed ID: 17120142
    [Abstract] [Full Text] [Related]

  • 17. Molecular dissection of the role of histidine in nickel hyperaccumulation in Thlaspi goesingense (Hálácsy).
    Persans MW, Yan X, Patnoe JM, Krämer U, Salt DE.
    Plant Physiol; 1999 Dec 25; 121(4):1117-26. PubMed ID: 10594099
    [Abstract] [Full Text] [Related]

  • 18. [Cloning and expression of the nickel/cobalt transferase gene in E. coli BL21 and bioaccumulation of nickel ion by genetically engineered strain].
    Zhang YM, Yin H, Ye JS, Peng H, Zhang N, Qin HM, Yang F, He BY.
    Huan Jing Ke Xue; 2007 Apr 25; 28(4):918-23. PubMed ID: 17639961
    [Abstract] [Full Text] [Related]

  • 19. Rhizosphere characteristics of indigenously growing nickel hyperaccumulator and excluder plants on serpentine soil.
    Wenzel WW, Bunkowski M, Puschenreiter M, Horak O.
    Environ Pollut; 2003 Apr 25; 123(1):131-8. PubMed ID: 12663213
    [Abstract] [Full Text] [Related]

  • 20. Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator, Thlaspi caerulescens.
    Boominathan R, Doran PM.
    Biotechnol Bioeng; 2003 Jul 20; 83(2):158-67. PubMed ID: 12768621
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.