These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
202 related items for PubMed ID: 16342933
21. Indole-3-glycerol-phosphate synthase from Sulfolobus solfataricus as a model for studying thermostable TIM-barrel enzymes. Andreotti G, Tutino ML, Sannia G, Marino G, Cubellis MV. Biochim Biophys Acta; 1994 Oct 19; 1208(2):310-5. PubMed ID: 7947963 [Abstract] [Full Text] [Related]
23. Coevolving residues of (beta/alpha)(8)-barrel proteins play roles in stabilizing active site architecture and coordinating protein dynamics. Shen H, Xu F, Hu H, Wang F, Wu Q, Huang Q, Wang H. J Struct Biol; 2008 Dec 19; 164(3):281-92. PubMed ID: 18838123 [Abstract] [Full Text] [Related]
24. Mutational analysis of the active site of indoleglycerol phosphate synthase from Escherichia coli. Darimont B, Stehlin C, Szadkowski H, Kirschner K. Protein Sci; 1998 May 19; 7(5):1221-32. PubMed ID: 9605328 [Abstract] [Full Text] [Related]
26. A rationally designed monomeric variant of anthranilate phosphoribosyltransferase from Sulfolobus solfataricus is as active as the dimeric wild-type enzyme but less thermostable. Schwab T, Skegro D, Mayans O, Sterner R. J Mol Biol; 2008 Feb 15; 376(2):506-16. PubMed ID: 18164726 [Abstract] [Full Text] [Related]
30. Biochemical characterization and homology modeling of a purine-specific ribonucleoside hydrolase from the archaeon Sulfolobus solfataricus: insights into mechanisms of protein stabilization. Porcelli M, Peluso I, Marabotti A, Facchiano A, Cacciapuoti G. Arch Biochem Biophys; 2009 Mar 01; 483(1):55-65. PubMed ID: 19121283 [Abstract] [Full Text] [Related]
31. Structural bases of feed-back control of arginine biosynthesis, revealed by the structures of two hexameric N-acetylglutamate kinases, from Thermotoga maritima and Pseudomonas aeruginosa. Ramón-Maiques S, Fernández-Murga ML, Gil-Ortiz F, Vagin A, Fita I, Rubio V. J Mol Biol; 2006 Feb 24; 356(3):695-713. PubMed ID: 16376937 [Abstract] [Full Text] [Related]
33. Structural analysis of kinetic folding intermediates for a TIM barrel protein, indole-3-glycerol phosphate synthase, by hydrogen exchange mass spectrometry and Gō model simulation. Gu Z, Rao MK, Forsyth WR, Finke JM, Matthews CR. J Mol Biol; 2007 Nov 23; 374(2):528-46. PubMed ID: 17942114 [Abstract] [Full Text] [Related]
34. Mimicking enzyme evolution by generating new (betaalpha)8-barrels from (betaalpha)4-half-barrels. Höcker B, Claren J, Sterner R. Proc Natl Acad Sci U S A; 2004 Nov 23; 101(47):16448-53. PubMed ID: 15539462 [Abstract] [Full Text] [Related]
36. Improving the catalytic activity of a thermophilic enzyme at low temperatures. Merz A, Yee MC, Szadkowski H, Pappenberger G, Crameri A, Stemmer WP, Yanofsky C, Kirschner K. Biochemistry; 2000 Feb 08; 39(5):880-9. PubMed ID: 10653631 [Abstract] [Full Text] [Related]
37. Computational study of the ground state of thermophilic indole glycerol phosphate synthase: structural alterations at the active site with temperature. Mazumder-Shivakumar D, Kahn K, Bruice TC. J Am Chem Soc; 2004 May 19; 126(19):5936-7. PubMed ID: 15137737 [Abstract] [Full Text] [Related]
38. Structure and kinetics of indole-3-glycerol phosphate synthase from Pseudomonas aeruginosa: Decarboxylation is not essential for indole formation. Söderholm A, Newton MS, Patrick WM, Selmer M. J Biol Chem; 2020 Nov 20; 295(47):15948-15956. PubMed ID: 32928960 [Abstract] [Full Text] [Related]