These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
332 related items for PubMed ID: 16353197
1. Influence of substrate concentration on the stability and yield of continuous biohydrogen production. Kyazze G, Martinez-Perez N, Dinsdale R, Premier GC, Hawkes FR, Guwy AJ, Hawkes DL. Biotechnol Bioeng; 2006 Apr 05; 93(5):971-9. PubMed ID: 16353197 [Abstract] [Full Text] [Related]
2. Performance characteristics of a two-stage dark fermentative system producing hydrogen and methane continuously. Kyazze G, Dinsdale R, Guwy AJ, Hawkes FR, Premier GC, Hawkes DL. Biotechnol Bioeng; 2007 Jul 01; 97(4):759-70. PubMed ID: 17163512 [Abstract] [Full Text] [Related]
3. Fermentative hydrogen production and bacterial community structure in high-rate anaerobic bioreactors containing silicone-immobilized and self-flocculated sludge. Wu SY, Hung CH, Lin CN, Chen HW, Lee AS, Chang JS. Biotechnol Bioeng; 2006 Apr 05; 93(5):934-46. PubMed ID: 16329152 [Abstract] [Full Text] [Related]
4. Performance comparison of a continuous-flow stirred-tank reactor and an anaerobic sequencing batch reactor for fermentative hydrogen production depending on substrate concentration. Kim SH, Han SK, Shin HS. Water Sci Technol; 2005 Apr 05; 52(10-11):23-9. PubMed ID: 16459773 [Abstract] [Full Text] [Related]
6. Response of a biohydrogen-producing reactor to the substrate shift from sucrose to lactose. Zhao QB, Mu Y, Wang Y, Liu XW, Dong F, Yu HQ. Bioresour Technol; 2008 Nov 05; 99(17):8344-7. PubMed ID: 18424039 [Abstract] [Full Text] [Related]
10. Measurement of H2 consumption and its role in continuous fermentative hydrogen production. Kraemer JT, Bagley DM. Water Sci Technol; 2008 Nov 05; 57(5):681-5. PubMed ID: 18401138 [Abstract] [Full Text] [Related]
11. Anaerobic hydrogen production with an efficient carrier-induced granular sludge bed bioreactor. Lee KS, Wu JF, Lo YS, Lo YC, Lin PJ, Chang JS. Biotechnol Bioeng; 2004 Sep 05; 87(5):648-57. PubMed ID: 15352063 [Abstract] [Full Text] [Related]
12. Dark H2 fermentation from sucrose and xylose using H2-producing indigenous bacteria: feasibility and kinetic studies. Lo YC, Chen WM, Hung CH, Chen SD, Chang JS. Water Res; 2008 Feb 05; 42(4-5):827-42. PubMed ID: 17889245 [Abstract] [Full Text] [Related]
13. Thermophilic biohydrogen production from glucose with trickling biofilter. Oh YK, Kim SH, Kim MS, Park S. Biotechnol Bioeng; 2004 Dec 20; 88(6):690-8. PubMed ID: 15532039 [Abstract] [Full Text] [Related]
14. Biological hydrogen production in a UASB reactor with granules. II: Reactor performance in 3-year operation. Yu HQ, Mu Y. Biotechnol Bioeng; 2006 Aug 05; 94(5):988-95. PubMed ID: 16615161 [Abstract] [Full Text] [Related]
15. Enhancing fermentative hydrogen production from sucrose. Perera KR, Nirmalakhandan N. Bioresour Technol; 2010 Dec 05; 101(23):9137-43. PubMed ID: 20674339 [Abstract] [Full Text] [Related]
19. Biohydrogen production from wheat straw hydrolysate by dark fermentation using extreme thermophilic mixed culture. Kongjan P, O-Thong S, Kotay M, Min B, Angelidaki I. Biotechnol Bioeng; 2010 Apr 01; 105(5):899-908. PubMed ID: 19998285 [Abstract] [Full Text] [Related]
20. Increased biological hydrogen production with reduced organic loading. Van Ginkel SW, Logan B. Water Res; 2005 Oct 01; 39(16):3819-26. PubMed ID: 16129472 [Abstract] [Full Text] [Related] Page: [Next] [New Search]