These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


346 related items for PubMed ID: 16354787

  • 1. Fixed metabolic costs for highly variable rates of protein synthesis in sea urchin embryos and larvae.
    Pace DA, Manahan DT.
    J Exp Biol; 2006 Jan; 209(Pt 1):158-70. PubMed ID: 16354787
    [Abstract] [Full Text] [Related]

  • 2. Cost of protein synthesis and energy allocation during development of antarctic sea urchin embryos and larvae.
    Pace DA, Manahan DT.
    Biol Bull; 2007 Apr; 212(2):115-29. PubMed ID: 17438204
    [Abstract] [Full Text] [Related]

  • 3. High macromolecular synthesis with low metabolic cost in Antarctic sea urchin embryos.
    Marsh AG, Maxson RE, Manahan DT.
    Science; 2001 Mar 09; 291(5510):1950-2. PubMed ID: 11239152
    [Abstract] [Full Text] [Related]

  • 4. CO2 induced seawater acidification impacts sea urchin larval development I: elevated metabolic rates decrease scope for growth and induce developmental delay.
    Stumpp M, Wren J, Melzner F, Thorndyke MC, Dupont ST.
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Nov 09; 160(3):331-40. PubMed ID: 21742050
    [Abstract] [Full Text] [Related]

  • 5. Inversion of left-right asymmetry in the formation of the adult rudiment in sea urchin larvae: removal of a part of embryos at the gastrula stage.
    Aihara M, Amemiya S.
    Zygote; 2000 Nov 09; 8 Suppl 1():S82-3. PubMed ID: 11191334
    [No Abstract] [Full Text] [Related]

  • 6. Growth and protein metabolism in red drum (Sciaenops ocellatus) larvae exposed to environmental levels of atrazine and malathion.
    McCarthy ID, Fuiman LA.
    Aquat Toxicol; 2008 Jul 30; 88(4):220-9. PubMed ID: 18572261
    [Abstract] [Full Text] [Related]

  • 7. Energy metabolism during embryonic development and larval growth of an Antarctic sea urchin.
    Marsh AG, Leong PK, Manahan DT.
    J Exp Biol; 1999 Aug 30; 202(Pt 15):2041-50. PubMed ID: 10393819
    [Abstract] [Full Text] [Related]

  • 8. Microtubule formation from maternal tubulins during sea urchin embryogenesis: measurement of soluble and insoluble tubulin pools.
    Gong ZY, Brandhorst BP.
    Mol Reprod Dev; 1988 Aug 30; 1(1):3-9. PubMed ID: 3272152
    [Abstract] [Full Text] [Related]

  • 9. Cadmium induces the expression of specific stress proteins in sea urchin embryos.
    Roccheri MC, Agnello M, Bonaventura R, Matranga V.
    Biochem Biophys Res Commun; 2004 Aug 13; 321(1):80-7. PubMed ID: 15358218
    [Abstract] [Full Text] [Related]

  • 10. Effect of reduced protein synthesis on the cell cycle in sea urchin embryos.
    Dubé F.
    J Cell Physiol; 1988 Dec 13; 137(3):545-52. PubMed ID: 2903865
    [Abstract] [Full Text] [Related]

  • 11. Exogastrulation and interference with the expression of major yolk protein by estrogens administered to sea urchins.
    Kiyomoto M, Kikuchi A, Morinaga S, Unuma T, Yokota Y.
    Cell Biol Toxicol; 2008 Dec 13; 24(6):611-20. PubMed ID: 18459060
    [Abstract] [Full Text] [Related]

  • 12. Advances in the cryopreservation of sea-urchin embryos: Potential application in marine water quality assessment.
    Bellas J, Paredes E.
    Cryobiology; 2011 Jun 13; 62(3):174-80. PubMed ID: 21338597
    [Abstract] [Full Text] [Related]

  • 13. Heterochronic developmental shift caused by thyroid hormone in larval sand dollars and its implications for phenotypic plasticity and the evolution of nonfeeding development.
    Heyland A, Hodin J.
    Evolution; 2004 Mar 13; 58(3):524-38. PubMed ID: 15119437
    [Abstract] [Full Text] [Related]

  • 14. CO2 induced seawater acidification impacts sea urchin larval development II: gene expression patterns in pluteus larvae.
    Stumpp M, Dupont S, Thorndyke MC, Melzner F.
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Nov 13; 160(3):320-30. PubMed ID: 21742049
    [Abstract] [Full Text] [Related]

  • 15. Evolutionary and experimental change in egg volume, heterochrony of larval body and juvenile rudiment, and evolutionary reversibility in pluteus form.
    Bertram DF, Phillips NE, Strathmann RR.
    Evol Dev; 2009 Nov 13; 11(6):728-39. PubMed ID: 19878294
    [Abstract] [Full Text] [Related]

  • 16. How does metabolic rate scale with egg size? An experimental test with sea urchin embryos.
    Moran AL, Allen JD.
    Biol Bull; 2007 Apr 13; 212(2):143-50. PubMed ID: 17438206
    [Abstract] [Full Text] [Related]

  • 17. Cell adhesion-dependent regulation of cell growth during sea urchin development.
    Ghersi G, Salamone M, Levi G, Vittorelli ML.
    Eur J Cell Biol; 1996 Mar 13; 69(3):259-66. PubMed ID: 8900490
    [Abstract] [Full Text] [Related]

  • 18. [Effect of a number of metabolic inhibitors and other biologically active substances on the development of sea urchin embryos].
    Buzhurina IM, Panov MA, Samoĭlov VI.
    Ontogenez; 1978 Mar 13; 9(3):305-9. PubMed ID: 673327
    [Abstract] [Full Text] [Related]

  • 19. Co-option and dissociation in larval origins and evolution: the sea urchin larval gut.
    Love AC, Lee AE, Andrews ME, Raff RA.
    Evol Dev; 2008 Mar 13; 10(1):74-88. PubMed ID: 18184359
    [Abstract] [Full Text] [Related]

  • 20. EGTA treatment causes the synthesis of heat shock proteins in sea urchin embryos.
    Roccheri MC, Onorato K, Tipa C, Casano C.
    Mol Cell Biol Res Commun; 2000 May 13; 3(5):306-11. PubMed ID: 10964755
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.