These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


313 related items for PubMed ID: 16359694

  • 1. Convection, diffusion and reaction in a surface-based biosensor: modeling of cooperativity and binding site competition on the surface and in the hydrogel.
    Lebedev K, Mafé S, Stroeve P.
    J Colloid Interface Sci; 2006 Apr 15; 296(2):527-37. PubMed ID: 16359694
    [Abstract] [Full Text] [Related]

  • 2. Transport and kinetic processes underlying biomolecular interactions in the BIACORE optical biosensor.
    Sikavitsas V, Nitsche JM, Mountziaris TJ.
    Biotechnol Prog; 2002 Apr 15; 18(4):885-97. PubMed ID: 12153326
    [Abstract] [Full Text] [Related]

  • 3. Antigen-antibody binding and mass transport by convection and diffusion to a surface: a two-dimensional computer model of binding and dissociation kinetics.
    Glaser RW.
    Anal Biochem; 1993 Aug 15; 213(1):152-61. PubMed ID: 8238868
    [Abstract] [Full Text] [Related]

  • 4. A theoretical and experimental study of competition between solution and surface receptors for ligand in a Biacore flow cell.
    He X, Coombs D, Myszka DG, Goldstein B.
    Bull Math Biol; 2006 Jul 15; 68(5):1125-50. PubMed ID: 16804651
    [Abstract] [Full Text] [Related]

  • 5. Evaluation of two- and three-dimensional streptavidin binding platforms for surface plasmon resonance spectroscopy studies of DNA hybridization and protein-DNA binding.
    Yang N, Su X, Tjong V, Knoll W.
    Biosens Bioelectron; 2007 May 15; 22(11):2700-6. PubMed ID: 17223028
    [Abstract] [Full Text] [Related]

  • 6. A Predictive Approach Using Fractal Analysis for Analyte-Receptor Binding and Dissociation Kinetics for Surface Plasmon Resonance Biosensor Applications.
    Ramakrishnan A, Sadana A.
    J Colloid Interface Sci; 2000 Sep 15; 229(2):628-640. PubMed ID: 10985845
    [Abstract] [Full Text] [Related]

  • 7. Theoretical analysis of protein concentration determination using biosensor technology under conditions of partial mass transport limitation.
    Christensen LL.
    Anal Biochem; 1997 Jul 01; 249(2):153-64. PubMed ID: 9212867
    [Abstract] [Full Text] [Related]

  • 8. Analysis of mass transport-limited binding kinetics in evanescent wave biosensors.
    Schuck P, Minton AP.
    Anal Biochem; 1996 Sep 05; 240(2):262-72. PubMed ID: 8811920
    [Abstract] [Full Text] [Related]

  • 9. The influence of transport on the kinetics of binding to surface receptors: application to cells and BIAcore.
    Goldstein B, Coombs D, He X, Pineda AR, Wofsy C.
    J Mol Recognit; 1999 Sep 05; 12(5):293-9. PubMed ID: 10556877
    [Abstract] [Full Text] [Related]

  • 10. Determination of binding constants by equilibrium titration with circulating sample in a surface plasmon resonance biosensor.
    Schuck P, Millar DB, Kortt AA.
    Anal Biochem; 1998 Dec 01; 265(1):79-91. PubMed ID: 9866711
    [Abstract] [Full Text] [Related]

  • 11. Kinetic analysis of the mass transport limited interaction between the tyrosine kinase lck SH2 domain and a phosphorylated peptide studied by a new cuvette-based surface plasmon resonance instrument.
    de Mol NJ, Plomp E, Fischer MJ, Ruijtenbeek R.
    Anal Biochem; 2000 Mar 01; 279(1):61-70. PubMed ID: 10683231
    [Abstract] [Full Text] [Related]

  • 12. Measuring binding kinetics of surface-bound molecules using the surface plasmon resonance technique.
    Li B, Chen J, Long M.
    Anal Biochem; 2008 Jun 15; 377(2):195-201. PubMed ID: 18384740
    [Abstract] [Full Text] [Related]

  • 13. Extracting kinetic rate constants from surface plasmon resonance array systems.
    Rich RL, Cannon MJ, Jenkins J, Pandian P, Sundaram S, Magyar R, Brockman J, Lambert J, Myszka DG.
    Anal Biochem; 2008 Feb 01; 373(1):112-20. PubMed ID: 17889820
    [Abstract] [Full Text] [Related]

  • 14. A kinetic study of analyte-receptor binding and dissociation, and dissociation alone, for biosensor applications: a fractal analysis.
    Sadana A.
    Anal Biochem; 2001 Apr 01; 291(1):34-47. PubMed ID: 11262154
    [Abstract] [Full Text] [Related]

  • 15. Characterization of Ca2+ and phosphocholine interactions with C-reactive protein using a surface plasmon resonance biosensor.
    Christopeit T, Gossas T, Danielson UH.
    Anal Biochem; 2009 Aug 01; 391(1):39-44. PubMed ID: 19435596
    [Abstract] [Full Text] [Related]

  • 16. Surface plasmon resonance biosensing.
    Piliarik M, Vaisocherová H, Homola J.
    Methods Mol Biol; 2009 Aug 01; 503():65-88. PubMed ID: 19151937
    [Abstract] [Full Text] [Related]

  • 17. Multi-analyte surface plasmon resonance biosensing.
    Homola J, Vaisocherová H, Dostálek J, Piliarik M.
    Methods; 2005 Sep 01; 37(1):26-36. PubMed ID: 16199172
    [Abstract] [Full Text] [Related]

  • 18. Surface plasmon enhanced diffraction for label-free biosensing.
    Yu F, Tian S, Yao D, Knoll W.
    Anal Chem; 2004 Jul 01; 76(13):3530-5. PubMed ID: 15228321
    [Abstract] [Full Text] [Related]

  • 19. Making it stick: convection, reaction and diffusion in surface-based biosensors.
    Squires TM, Messinger RJ, Manalis SR.
    Nat Biotechnol; 2008 Apr 01; 26(4):417-26. PubMed ID: 18392027
    [Abstract] [Full Text] [Related]

  • 20. A novel nanolayer biosensor principle.
    Jennissen HP, Zumbrink T.
    Biosens Bioelectron; 2004 Apr 15; 19(9):987-97. PubMed ID: 15018953
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.