These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


317 related items for PubMed ID: 16361226

  • 1. Genomewide screen reveals a wide regulatory network for di/tripeptide utilization in Saccharomyces cerevisiae.
    Cai H, Kauffman S, Naider F, Becker JM.
    Genetics; 2006 Mar; 172(3):1459-76. PubMed ID: 16361226
    [Abstract] [Full Text] [Related]

  • 2. Differential regulation and substrate preferences in two peptide transporters of Saccharomyces cerevisiae.
    Cai H, Hauser M, Naider F, Becker JM.
    Eukaryot Cell; 2007 Oct; 6(10):1805-13. PubMed ID: 17693598
    [Abstract] [Full Text] [Related]

  • 3. Substrate preference is altered by mutations in the fifth transmembrane domain of Ptr2p, the di/tri-peptide transporter of Saccharomyces cerevisiae.
    Hauser M, Kauffman S, Naider F, Becker JM.
    Mol Membr Biol; 2005 Oct; 22(3):215-27. PubMed ID: 16096264
    [Abstract] [Full Text] [Related]

  • 4. Genome-wide expression analysis of genes affected by amino acid sensor Ssy1p in Saccharomyces cerevisiae.
    Kodama Y, Omura F, Takahashi K, Shirahige K, Ashikari T.
    Curr Genet; 2002 May; 41(2):63-72. PubMed ID: 12073087
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Ady2p is essential for the acetate permease activity in the yeast Saccharomyces cerevisiae.
    Paiva S, Devaux F, Barbosa S, Jacq C, Casal M.
    Yeast; 2004 Feb; 21(3):201-10. PubMed ID: 14968426
    [Abstract] [Full Text] [Related]

  • 8. Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p.
    Kawahata M, Masaki K, Fujii T, Iefuji H.
    FEMS Yeast Res; 2006 Sep; 6(6):924-36. PubMed ID: 16911514
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Genome-wide expression profile of the mnn2 Delta mutant of Saccharomyces cerevisiae.
    Corbacho I, Olivero I, Hohmann S, Sunnerhagen P, Hernández LM.
    Antonie Van Leeuwenhoek; 2006 Sep; 89(3-4):485-94. PubMed ID: 16622789
    [Abstract] [Full Text] [Related]

  • 11. Direct activation of genes involved in intracellular iron use by the yeast iron-responsive transcription factor Aft2 without its paralog Aft1.
    Courel M, Lallet S, Camadro JM, Blaiseau PL.
    Mol Cell Biol; 2005 Aug; 25(15):6760-71. PubMed ID: 16024809
    [Abstract] [Full Text] [Related]

  • 12. Co-expression of the Na(+)/H(+)-antiporter and H(+)-ATPase genes of the salt-tolerant yeast Zygosaccharomyces rouxii in Saccharomyces cerevisiae.
    Watanabe Y, Oshima N, Tamai Y.
    FEMS Yeast Res; 2005 Feb; 5(4-5):411-7. PubMed ID: 15691746
    [Abstract] [Full Text] [Related]

  • 13. Analysing the substrate multispecificity of a proton-coupled oligopeptide transporter using a dipeptide library.
    Ito K, Hikida A, Kawai S, Lan VT, Motoyama T, Kitagawa S, Yoshikawa Y, Kato R, Kawarasaki Y.
    Nat Commun; 2013 Feb; 4():2502. PubMed ID: 24060756
    [Abstract] [Full Text] [Related]

  • 14. The putative monocarboxylate permeases of the yeast Saccharomyces cerevisiae do not transport monocarboxylic acids across the plasma membrane.
    Makuc J, Paiva S, Schauen M, Krämer R, André B, Casal M, Leão C, Boles E.
    Yeast; 2001 Sep 15; 18(12):1131-43. PubMed ID: 11536335
    [Abstract] [Full Text] [Related]

  • 15. Nutrient regulation of oligopeptide transport in Saccharomyces cerevisiae.
    Wiles AM, Cai H, Naider F, Becker JM.
    Microbiology (Reading); 2006 Oct 15; 152(Pt 10):3133-3145. PubMed ID: 17005992
    [Abstract] [Full Text] [Related]

  • 16. Possible roles of vacuolar H+-ATPase and mitochondrial function in tolerance to air-drying stress revealed by genome-wide screening of Saccharomyces cerevisiae deletion strains.
    Shima J, Ando A, Takagi H.
    Yeast; 2008 Mar 15; 25(3):179-90. PubMed ID: 18224659
    [Abstract] [Full Text] [Related]

  • 17. Expression of succinate dehydrogenase flavoprotein subunit in saccharomyces cerevisiae studied by lacZ reporter strategy. Effect of FLX1 deletion.
    Giancaspero TA, Brizio C, Wait R, Boles E, Barile M.
    Ital J Biochem; 2007 Dec 15; 56(4):319-22. PubMed ID: 19192635
    [Abstract] [Full Text] [Related]

  • 18. Effect of amino acids on peptide transport in sake yeast.
    Yamada T, Furukawa K, Hara S, Mizoguchi H.
    J Biosci Bioeng; 2005 Apr 15; 99(4):383-9. PubMed ID: 16233806
    [Abstract] [Full Text] [Related]

  • 19. Why does Kluyveromyces lactis not grow under anaerobic conditions? Comparison of essential anaerobic genes of Saccharomyces cerevisiae with the Kluyveromyces lactis genome.
    Snoek IS, Steensma HY.
    FEMS Yeast Res; 2006 May 15; 6(3):393-403. PubMed ID: 16630279
    [Abstract] [Full Text] [Related]

  • 20. 14-3-3 Proteins: insights from genome-wide studies in yeast.
    van Heusden GP.
    Genomics; 2009 Nov 15; 94(5):287-93. PubMed ID: 19631734
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.