These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
195 related items for PubMed ID: 16364541
1. Early cellular events in multiple sclerosis. Intimations of an extrinsic myelinolytic antigen. Gay FW. Clin Neurol Neurosurg; 2006 Mar; 108(3):234-40. PubMed ID: 16364541 [Abstract] [Full Text] [Related]
2. Loss of aquaporin 4 in lesions of neuromyelitis optica: distinction from multiple sclerosis. Misu T, Fujihara K, Kakita A, Konno H, Nakamura M, Watanabe S, Takahashi T, Nakashima I, Takahashi H, Itoyama Y. Brain; 2007 May; 130(Pt 5):1224-34. PubMed ID: 17405762 [Abstract] [Full Text] [Related]
3. Multiple sclerosis: in situ evidence for antibody- and complement-mediated demyelination. Storch MK, Piddlesden S, Haltia M, Iivanainen M, Morgan P, Lassmann H. Ann Neurol; 1998 Apr; 43(4):465-71. PubMed ID: 9546327 [Abstract] [Full Text] [Related]
4. Clonally expanded plasma cells in the cerebrospinal fluid of MS patients produce myelin-specific antibodies. von Büdingen HC, Harrer MD, Kuenzle S, Meier M, Goebels N. Eur J Immunol; 2008 Jul; 38(7):2014-23. PubMed ID: 18521957 [Abstract] [Full Text] [Related]
5. Multiple sclerosis: distribution of inflammatory cells in newly forming lesions. Henderson AP, Barnett MH, Parratt JD, Prineas JW. Ann Neurol; 2009 Dec; 66(6):739-53. PubMed ID: 20035511 [Abstract] [Full Text] [Related]
6. Pattern-specific loss of aquaporin-4 immunoreactivity distinguishes neuromyelitis optica from multiple sclerosis. Roemer SF, Parisi JE, Lennon VA, Benarroch EE, Lassmann H, Bruck W, Mandler RN, Weinshenker BG, Pittock SJ, Wingerchuk DM, Lucchinetti CF. Brain; 2007 May; 130(Pt 5):1194-205. PubMed ID: 17282996 [Abstract] [Full Text] [Related]
7. Immunoglobulins and complement in postmortem multiple sclerosis tissue. Barnett MH, Parratt JD, Cho ES, Prineas JW. Ann Neurol; 2009 Jan; 65(1):32-46. PubMed ID: 19194879 [Abstract] [Full Text] [Related]
8. Dendritic cells in multiple sclerosis lesions: maturation stage, myelin uptake, and interaction with proliferating T cells. Serafini B, Rosicarelli B, Magliozzi R, Stigliano E, Capello E, Mancardi GL, Aloisi F. J Neuropathol Exp Neurol; 2006 Feb; 65(2):124-41. PubMed ID: 16462204 [Abstract] [Full Text] [Related]
9. Specific central nervous system recruitment of HLA-G(+) regulatory T cells in multiple sclerosis. Huang YH, Zozulya AL, Weidenfeller C, Metz I, Buck D, Toyka KV, Brück W, Wiendl H. Ann Neurol; 2009 Aug; 66(2):171-83. PubMed ID: 19705413 [Abstract] [Full Text] [Related]
11. Homogeneity of active demyelinating lesions in established multiple sclerosis. Breij EC, Brink BP, Veerhuis R, van den Berg C, Vloet R, Yan R, Dijkstra CD, van der Valk P, Bö L. Ann Neurol; 2008 Jan; 63(1):16-25. PubMed ID: 18232012 [Abstract] [Full Text] [Related]
13. Multiple sclerosis: capping of surface immunoglobulin G on macrophages engaged in myelin breakdown. Prineas JW, Graham JS. Ann Neurol; 1981 Aug; 10(2):149-58. PubMed ID: 7025748 [Abstract] [Full Text] [Related]
19. The blood-brain barrier in cortical multiple sclerosis lesions. van Horssen J, Brink BP, de Vries HE, van der Valk P, Bø L. J Neuropathol Exp Neurol; 2007 Apr; 66(4):321-8. PubMed ID: 17413323 [Abstract] [Full Text] [Related]
20. Distribution of the immune inhibitory molecules CD200 and CD200R in the normal central nervous system and multiple sclerosis lesions suggests neuron-glia and glia-glia interactions. Koning N, Swaab DF, Hoek RM, Huitinga I. J Neuropathol Exp Neurol; 2009 Feb; 68(2):159-67. PubMed ID: 19151626 [Abstract] [Full Text] [Related] Page: [Next] [New Search]