These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
161 related items for PubMed ID: 16366671
21. The primary active components, antioxidant properties, and differential metabolite profiles of radish sprouts (Raphanus sativus L.) upon domestic storage: analysis of nutritional quality. Li R, Zhu Y. J Sci Food Agric; 2018 Dec; 98(15):5853-5860. PubMed ID: 29786832 [Abstract] [Full Text] [Related]
22. Instability and Structural Change of 4-Methylsulfinyl-3-butenyl Isothiocyanate in the Hydrolytic Process. Song D, Liang H, Kuang P, Tang P, Hu G, Yuan Q. J Agric Food Chem; 2013 May 29; 61(21):5097-102. PubMed ID: 23688308 [Abstract] [Full Text] [Related]
23. Identification and quantification of glucosinolates in sprouts derived from seeds of wild Eruca sativa L. (salad rocket) and Diplotaxis tenuifolia L. (wild rocket) from diverse geographical locations. Bennett RN, Carvalho R, Mellon FA, Eagles J, Rosa EA. J Agric Food Chem; 2007 Jan 10; 55(1):67-74. PubMed ID: 17199315 [Abstract] [Full Text] [Related]
24. Correlation of Glucosinolates and Volatile Constituents of Six Brassicaceae Seeds with Their Antioxidant Activities Based on Partial Least Squares Regression. Khalil N, Gad HA, Al Musayeib NM, Bishr M, Ashour ML. Plants (Basel); 2022 Apr 20; 11(9):. PubMed ID: 35567116 [Abstract] [Full Text] [Related]
25. Structure of a Precursor to the Blue Components Produced in the Blue Discoloration in Japanese Radish (Raphanus sativus) Roots. Teranishi K, Masayasu N. J Nat Prod; 2016 May 27; 79(5):1381-7. PubMed ID: 27128155 [Abstract] [Full Text] [Related]
26. First total synthesis of 4-methylthio-3-butenyl glucosinolate. Yamazoe S, Hasegawa K, Shigemori H. Biosci Biotechnol Biochem; 2009 Mar 23; 73(3):785-7. PubMed ID: 19270363 [Abstract] [Full Text] [Related]
27. Synthesis of raphanuside, an unusual oxathiane-fused thioglucoside isolated from the seeds of Raphanus sativus L. Yang F, Lian G, Yu B. Carbohydr Res; 2010 Jan 26; 345(2):309-14. PubMed ID: 20004368 [Abstract] [Full Text] [Related]
28. Variation of glucosinolates in wild radish (Raphanus raphanistrum) accessions. Malik MS, Riley MB, Norsworthy JK, Bridges W. J Agric Food Chem; 2010 Nov 24; 58(22):11626-32. PubMed ID: 20964435 [Abstract] [Full Text] [Related]
29. Influence of different light conditions and time of sprouting on harmful and beneficial aspects of rutabaga sprouts in comparison to their roots and seeds. Paśko P, Galanty A, Żmudzki P, Gdula-Argasińska J, Zagrodzki P. J Sci Food Agric; 2019 Jan 15; 99(1):302-308. PubMed ID: 29876936 [Abstract] [Full Text] [Related]
30. Mechanism Underlying the Onset of Internal Blue Discoloration in Japanese Radish (Raphanus sativus) Roots. Teranishi K, Masayasu N, Masuda D. J Agric Food Chem; 2016 Sep 07; 64(35):6745-51. PubMed ID: 27530819 [Abstract] [Full Text] [Related]
31. Removal of off-flavours from radish (Raphanus sativus L.) anthocyanin-rich pigments using chitosan and its mechanism(s). Gao R, Jing P, Ruan S, Zhang Y, Zhao S, Cai Z, Qian B. Food Chem; 2014 Mar 01; 146():423-8. PubMed ID: 24176362 [Abstract] [Full Text] [Related]
32. Glucoraphanin and 4-hydroxyglucobrassicin contents in seeds of 59 cultivars of broccoli, raab, kohlrabi, radish, cauliflower, brussels sprouts, kale, and cabbage. West LG, Meyer KA, Balch BA, Rossi FJ, Schultz MR, Haas GW. J Agric Food Chem; 2004 Feb 25; 52(4):916-26. PubMed ID: 14969551 [Abstract] [Full Text] [Related]
33. Glucosinolate profile variation of growth stages of wild radish (Raphanus raphanistrum). Malik MS, Riley MB, Norsworthy JK, Bridges W. J Agric Food Chem; 2010 Mar 24; 58(6):3309-15. PubMed ID: 20163113 [Abstract] [Full Text] [Related]
34. Large insertion in radish GRS1 enhances glucoraphanin content in intergeneric hybrids, Raphanobrassica (Raphanus sativus L. x Brassica oleracea var. acephala). Endo R, Chikano H, Itabashi E, Kawasaki M, Ohara T, Kakizaki T. Front Plant Sci; 2023 Mar 24; 14():1132302. PubMed ID: 37346118 [Abstract] [Full Text] [Related]
35. Glucosinolates redox activities: can they act as antioxidants? Natella F, Maldini M, Leoni G, Scaccini C. Food Chem; 2014 Apr 15; 149():226-32. PubMed ID: 24295700 [Abstract] [Full Text] [Related]
36. Acylated anthocyanins from sprouts of Raphanus sativus cv. Sango: isolation, structure elucidation and antioxidant activity. Matera R, Gabbanini S, Berretti S, Amorati R, De Nicola GR, Iori R, Valgimigli L. Food Chem; 2015 Jan 01; 166():397-406. PubMed ID: 25053073 [Abstract] [Full Text] [Related]
37. Raphasatin is a more potent inducer of the detoxification enzymes than its degradation products. Scholl C, Eshelman BD, Barnes DM, Hanlon PR. J Food Sci; 2011 Apr 01; 76(3):C504-11. PubMed ID: 21535821 [Abstract] [Full Text] [Related]
38. Branched-chain amino acid synthesis and glucosinolate-myrosinase system during takuan-zuke processing of radish root. Kobayashi W, Kobayashi T, Takahashi A, Kumakura K, Ayabe S, Matsuoka H. J Food Biochem; 2021 Dec 01; 45(12):e13983. PubMed ID: 34730849 [Abstract] [Full Text] [Related]
39. LC-MS profiling of glucosinolates in the seeds of Brassica elongata Ehrh., and of the two stenoendemic B. botteri Vis and B. cazzae Ginzb. & Teyber. Montaut S, Blažević I, Ruščić M, Rollin P. Nat Prod Res; 2017 Jan 01; 31(1):58-62. PubMed ID: 27484611 [Abstract] [Full Text] [Related]