These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Theoretical aspects of the biological catch bond. Prezhdo OV, Pereverzev YV. Acc Chem Res; 2009 Jun 16; 42(6):693-703. PubMed ID: 19331389 [Abstract] [Full Text] [Related]
4. Direct observation of catch bonds involving cell-adhesion molecules. Marshall BT, Long M, Piper JW, Yago T, McEver RP, Zhu C. Nature; 2003 May 08; 423(6936):190-3. PubMed ID: 12736689 [Abstract] [Full Text] [Related]
5. For catch bonds, it all hinges on the interdomain region. Thomas W. J Cell Biol; 2006 Sep 25; 174(7):911-3. PubMed ID: 17000873 [Abstract] [Full Text] [Related]
6. Dynamic competition between catch and slip bonds in selectins bound to ligands. Barsegov V, Thirumalai D. J Phys Chem B; 2006 Dec 28; 110(51):26403-12. PubMed ID: 17181300 [Abstract] [Full Text] [Related]
7. Biophysics of catch bonds. Thomas WE, Vogel V, Sokurenko E. Annu Rev Biophys; 2008 Dec 28; 37():399-416. PubMed ID: 18573088 [Abstract] [Full Text] [Related]
8. Catch bonds in adhesion. Thomas W. Annu Rev Biomed Eng; 2008 Dec 28; 10():39-57. PubMed ID: 18647111 [Abstract] [Full Text] [Related]
9. Nonlinear mechanical modeling of cell adhesion. Kong D, Ji B, Dai L. J Theor Biol; 2008 Jan 07; 250(1):75-84. PubMed ID: 17977558 [Abstract] [Full Text] [Related]
10. Triphasic force dependence of E-selectin/ligand dissociation governs cell rolling under flow. Wayman AM, Chen W, McEver RP, Zhu C. Biophys J; 2010 Aug 09; 99(4):1166-74. PubMed ID: 20713000 [Abstract] [Full Text] [Related]
11. Anomalously increased lifetimes of biological complexes at zero force due to the protein-water interface. Pereverzev YV, Prezhdo OV, Sokurenko EV. J Phys Chem B; 2008 Sep 11; 112(36):11440-5. PubMed ID: 18710275 [Abstract] [Full Text] [Related]
13. Beyond induced-fit receptor-ligand interactions: structural changes that can significantly extend bond lifetimes. Nilsson LM, Thomas WE, Sokurenko EV, Vogel V. Structure; 2008 Jul 11; 16(7):1047-58. PubMed ID: 18611378 [Abstract] [Full Text] [Related]
14. Force modulating dynamic disorder: a physical model of catch-slip bond transitions in receptor-ligand forced dissociation experiments. Liu F, Ou-Yang ZC. Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov 11; 74(5 Pt 1):051904. PubMed ID: 17279936 [Abstract] [Full Text] [Related]
15. Adhesion mediated by bonds in series. Saterbak A, Lauffenburger DA. Biotechnol Prog; 1996 Nov 11; 12(5):682-99. PubMed ID: 8879156 [Abstract] [Full Text] [Related]
16. Dynamic disorder in receptor-ligand forced dissociation experiments. Liu F, Ou-Yang ZC, Iwamoto M. Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan 11; 73(1 Pt 1):010901. PubMed ID: 16486112 [Abstract] [Full Text] [Related]
17. Entropic-elasticity-controlled dissociation and energetic-elasticity-controlled rupture induce catch-to-slip bonds in cell-adhesion molecules. Wei Y. Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar 11; 77(3 Pt 1):031910. PubMed ID: 18517425 [Abstract] [Full Text] [Related]
18. Phenomenological and microscopic theories for catch bonds. Chakrabarti S, Hinczewski M, Thirumalai D. J Struct Biol; 2017 Jan 11; 197(1):50-56. PubMed ID: 27046010 [Abstract] [Full Text] [Related]
19. Rolling cell adhesion. McEver RP, Zhu C. Annu Rev Cell Dev Biol; 2010 Jan 11; 26():363-96. PubMed ID: 19575676 [Abstract] [Full Text] [Related]
20. Leukocyte adhesion: what's the catch? Hammer DA. Curr Biol; 2005 Feb 08; 15(3):R96-9. PubMed ID: 15694300 [Abstract] [Full Text] [Related] Page: [Next] [New Search]