These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
154 related items for PubMed ID: 16372327
1. Murine androgen-independent neuroendocrine carcinoma promotes metastasis of human prostate cancer cell line LNCaP. Uchida K, Masumori N, Takahashi A, Itoh N, Kato K, Matusik RJ, Tsukamoto T. Prostate; 2006 Apr 01; 66(5):536-45. PubMed ID: 16372327 [Abstract] [Full Text] [Related]
2. Characterization of prostatic neuroendocrine cell line established from neuroendocrine carcinoma of transgenic mouse allograft model. Uchida K, Masumori N, Takahashi A, Itoh N, Tsukamoto T. Prostate; 2005 Jan 01; 62(1):40-8. PubMed ID: 15389815 [Abstract] [Full Text] [Related]
3. NE-10 neuroendocrine cancer promotes the LNCaP xenograft growth in castrated mice. Jin RJ, Wang Y, Masumori N, Ishii K, Tsukamoto T, Shappell SB, Hayward SW, Kasper S, Matusik RJ. Cancer Res; 2004 Aug 01; 64(15):5489-95. PubMed ID: 15289359 [Abstract] [Full Text] [Related]
4. [The influence of neuroendocrine differentiation on the growth and androgen receptor expression of prostate carcinoma cells]. Song Y, Wu G, Xin DQ, Na YQ. Zhonghua Wai Ke Za Zhi; 2004 Dec 07; 42(23):1453-6. PubMed ID: 15733464 [Abstract] [Full Text] [Related]
5. A probasin-large T antigen transgenic mouse line develops prostate adenocarcinoma and neuroendocrine carcinoma with metastatic potential. Masumori N, Thomas TZ, Chaurand P, Case T, Paul M, Kasper S, Caprioli RM, Tsukamoto T, Shappell SB, Matusik RJ. Cancer Res; 2001 Mar 01; 61(5):2239-49. PubMed ID: 11280793 [Abstract] [Full Text] [Related]
6. Expression and role of Foxa proteins in prostate cancer. Mirosevich J, Gao N, Gupta A, Shappell SB, Jove R, Matusik RJ. Prostate; 2006 Jul 01; 66(10):1013-28. PubMed ID: 16001449 [Abstract] [Full Text] [Related]
7. Adrenomedullin, an autocrine/paracrine factor induced by androgen withdrawal, stimulates 'neuroendocrine phenotype' in LNCaP prostate tumor cells. Berenguer C, Boudouresque F, Dussert C, Daniel L, Muracciole X, Grino M, Rossi D, Mabrouk K, Figarella-Branger D, Martin PM, Ouafik L. Oncogene; 2008 Jan 17; 27(4):506-18. PubMed ID: 17637748 [Abstract] [Full Text] [Related]
8. Androgen deprivation induces human prostate epithelial neuroendocrine differentiation of androgen-sensitive LNCaP cells. Yuan TC, Veeramani S, Lin FF, Kondrikou D, Zelivianski S, Igawa T, Karan D, Batra SK, Lin MF. Endocr Relat Cancer; 2006 Mar 17; 13(1):151-67. PubMed ID: 16601285 [Abstract] [Full Text] [Related]
9. Zoledronic acid but not somatostatin analogs exerts anti-tumor effects in a model of murine prostatic neuroendocrine carcinoma of the development of castration-resistant prostate cancer. Hashimoto K, Masumori N, Tanaka T, Maeda T, Kobayashi K, Kitamura H, Hirata K, Tsukamoto T. Prostate; 2013 Apr 17; 73(5):500-11. PubMed ID: 22996996 [Abstract] [Full Text] [Related]
10. Type I collagen receptor (alpha 2 beta 1) signaling promotes the growth of human prostate cancer cells within the bone. Hall CL, Dai J, van Golen KL, Keller ET, Long MW. Cancer Res; 2006 Sep 01; 66(17):8648-54. PubMed ID: 16951179 [Abstract] [Full Text] [Related]
11. Ectopical expression of human MUC18 increases metastasis of human prostate cancer cells. Wu GJ, Peng Q, Fu P, Wang SW, Chiang CF, Dillehay DL, Wu MW. Gene; 2004 Mar 03; 327(2):201-13. PubMed ID: 14980717 [Abstract] [Full Text] [Related]
12. Acquisition of neuroendocrine characteristics by prostate tumor cells is reversible: implications for prostate cancer progression. Cox ME, Deeble PD, Lakhani S, Parsons SJ. Cancer Res; 1999 Aug 01; 59(15):3821-30. PubMed ID: 10447001 [Abstract] [Full Text] [Related]
13. Interleukin-6 undergoes transition from growth inhibitor associated with neuroendocrine differentiation to stimulator accompanied by androgen receptor activation during LNCaP prostate cancer cell progression. Lee SO, Chun JY, Nadiminty N, Lou W, Gao AC. Prostate; 2007 May 15; 67(7):764-73. PubMed ID: 17373716 [Abstract] [Full Text] [Related]
14. Molecular characterization of prostatic small-cell neuroendocrine carcinoma. Clegg N, Ferguson C, True LD, Arnold H, Moorman A, Quinn JE, Vessella RL, Nelson PS. Prostate; 2003 Apr 01; 55(1):55-64. PubMed ID: 12640661 [Abstract] [Full Text] [Related]
15. Androgen receptor-dependent regulation of Bcl-xL expression: Implication in prostate cancer progression. Sun A, Tang J, Hong Y, Song J, Terranova PF, Thrasher JB, Svojanovsky S, Wang HG, Li B. Prostate; 2008 Mar 01; 68(4):453-61. PubMed ID: 18196538 [Abstract] [Full Text] [Related]
16. Transdifferentiation of prostate cancer cells to a neuroendocrine cell phenotype in vitro and in vivo. Burchardt T, Burchardt M, Chen MW, Cao Y, de la Taille A, Shabsigh A, Hayek O, Dorai T, Buttyan R. J Urol; 1999 Nov 01; 162(5):1800-5. PubMed ID: 10524938 [Abstract] [Full Text] [Related]
17. An allograft model of androgen independent prostatic neuroendocrine carcinoma derived from a large probasin promoter-T antigen transgenic mouse line. Masumori N, Tsuchiya K, Tu WH, Lee C, Kasper S, Tsukamoto T, Shappell SB, Matusik RJ. J Urol; 2004 Jan 01; 171(1):439-42. PubMed ID: 14665950 [Abstract] [Full Text] [Related]
19. Constitutive activation of gp130 leads to neuroendocrine differentiation in vitro and in vivo. Palmer J, Ernst M, Hammacher A, Hertzog PJ. Prostate; 2005 Feb 15; 62(3):282-9. PubMed ID: 15389784 [Abstract] [Full Text] [Related]
20. Conditional Akt activation promotes androgen-independent progression of prostate cancer. Li B, Sun A, Youn H, Hong Y, Terranova PF, Thrasher JB, Xu P, Spencer D. Carcinogenesis; 2007 Mar 15; 28(3):572-83. PubMed ID: 17032658 [Abstract] [Full Text] [Related] Page: [Next] [New Search]