These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


125 related items for PubMed ID: 16374810

  • 1. On-line confocal imaging of the events leading to structural dedifferentiation of an axonal segment into a growth cone after axotomy.
    Sahly I, Khoutorsky A, Erez H, Prager-Khoutorsky M, Spira ME.
    J Comp Neurol; 2006 Feb 10; 494(5):705-20. PubMed ID: 16374810
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Local calcium-dependent mechanisms determine whether a cut axonal end assembles a retarded endbulb or competent growth cone.
    Kamber D, Erez H, Spira ME.
    Exp Neurol; 2009 Sep 10; 219(1):112-25. PubMed ID: 19442660
    [Abstract] [Full Text] [Related]

  • 4. Formation of microtubule-based traps controls the sorting and concentration of vesicles to restricted sites of regenerating neurons after axotomy.
    Erez H, Malkinson G, Prager-Khoutorsky M, De Zeeuw CI, Hoogenraad CC, Spira ME.
    J Cell Biol; 2007 Feb 12; 176(4):497-507. PubMed ID: 17283182
    [Abstract] [Full Text] [Related]

  • 5. Local self-assembly mechanisms underlie the differential transformation of the proximal and distal cut axonal ends into functional and aberrant growth cones.
    Erez H, Spira ME.
    J Comp Neurol; 2008 Mar 01; 507(1):1019-30. PubMed ID: 18092341
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Distribution of GAP-43, beta-III tubulin and F-actin in developing and regenerating axons and their growth cones in vitro, following neurotrophin treatment.
    Avwenagha O, Campbell G, Bird MM.
    J Neurocytol; 2003 Nov 01; 32(9):1077-89. PubMed ID: 15044840
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Induction of growth cone formation by transient and localized increases of intracellular proteolytic activity.
    Ziv NE, Spira ME.
    J Cell Biol; 1998 Jan 12; 140(1):223-32. PubMed ID: 9425169
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Bundling of microtubules in the growth cone induced by laminin.
    Tang D, Goldberg DJ.
    Mol Cell Neurosci; 2000 Mar 12; 15(3):303-13. PubMed ID: 10736206
    [Abstract] [Full Text] [Related]

  • 14. Real time imaging of calcium-induced localized proteolytic activity after axotomy and its relation to growth cone formation.
    Gitler D, Spira ME.
    Neuron; 1998 Jun 12; 20(6):1123-35. PubMed ID: 9655501
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Growth cone steering by a physiological electric field requires dynamic microtubules, microfilaments and Rac-mediated filopodial asymmetry.
    Rajnicek AM, Foubister LE, McCaig CD.
    J Cell Sci; 2006 May 01; 119(Pt 9):1736-45. PubMed ID: 16595545
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Use of Aplysia neurons for the study of cellular alterations and the resealing of transected axons in vitro.
    Spira ME, Dormann A, Ashery U, Gabso M, Gitler D, Benbassat D, Oren R, Ziv NE.
    J Neurosci Methods; 1996 Oct 21; 69(1):91-102. PubMed ID: 8912939
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.