These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
197 related items for PubMed ID: 16375380
21. Structural, magnetic, and magnetoresistive properties of electrodeposited Ni5Zn21 alloy nanowires. Liu L, Tian H, Xie S, Zhou W, Mu S, Song L, Liu D, Luo S, Zhang Z, Xiang Y, Zhao X, Ma W, Shen J, Li J, Wang C, Wang G. J Phys Chem B; 2006 Oct 19; 110(41):20158-65. PubMed ID: 17034190 [Abstract] [Full Text] [Related]
22. Alloyed Zn(x)Cd(1-x)S nanocrystals with highly narrow luminescence spectral width. Zhong X, Feng Y, Knoll W, Han M. J Am Chem Soc; 2003 Nov 05; 125(44):13559-63. PubMed ID: 14583053 [Abstract] [Full Text] [Related]
23. Sol-gel template synthesis and photoluminescence of n- and p-type semiconductor oxide nanowires. Cao H, Qiu X, Liang Y, Zhang L, Zhao M, Zhu Q. Chemphyschem; 2006 Feb 13; 7(2):497-501. PubMed ID: 16363017 [Abstract] [Full Text] [Related]
24. Direct imaging of the visible emission bands from individual ZnO nanowires by near-field optical spectroscopy. Güell F, Ossó JO, Goñi AR, Cornet A, Morante JR. Nanotechnology; 2009 Aug 05; 20(31):315701. PubMed ID: 19597252 [Abstract] [Full Text] [Related]
25. Effects of thermal annealing on the structural and optical properties of Mg(x)Zn(1-x)O nanocrystals. Li JH, Liu YC, Shao CL, Zhang XT, Shen DZ, Lu YM, Zhang JY, Fan XW. J Colloid Interface Sci; 2005 Mar 15; 283(2):513-7. PubMed ID: 15721927 [Abstract] [Full Text] [Related]
26. Band-gap engineering of semiconductor nanowires through composition modulation. Liang Y, Zhai L, Zhao X, Xu D. J Phys Chem B; 2005 Apr 21; 109(15):7120-3. PubMed ID: 16851811 [Abstract] [Full Text] [Related]
27. Synthesis, growth process and photoluminescence properties of SrWO4 powders. Sczancoski JC, Cavalcante LS, Joya MR, Espinosa JW, Pizani PS, Varela JA, Longo E. J Colloid Interface Sci; 2009 Feb 01; 330(1):227-36. PubMed ID: 18990407 [Abstract] [Full Text] [Related]
28. Enhanced photoluminescence and field-emission behavior of vertically well aligned arrays of In-doped ZnO Nanowires. Ahmad M, Sun H, Zhu J. ACS Appl Mater Interfaces; 2011 Apr 01; 3(4):1299-305. PubMed ID: 21410190 [Abstract] [Full Text] [Related]
29. Carbothermal chemical vapor deposition route to Se one-dimensional nanostructures and their optical properties. Zhang H, Zuo M, Tan S, Li G, Zhang S, Hou J. J Phys Chem B; 2005 Jun 02; 109(21):10653-7. PubMed ID: 16852293 [Abstract] [Full Text] [Related]
30. Photoluminescence properties of InAs nanowires grown on GaAs and Si substrates. Sun MH, Leong ES, Chin AH, Ning CZ, Cirlin GE, Samsonenko YB, Dubrovskii VG, Chuang L, Chang-Hasnain C. Nanotechnology; 2010 Aug 20; 21(33):335705. PubMed ID: 20657047 [Abstract] [Full Text] [Related]
31. Growth mechanism and optical properties of aligned hexagonal ZnO nanoprisms synthesized by noncatalytic thermal evaporation. Umar A, Karunagaran B, Kim SH, Suh EK, Hahn YB. Inorg Chem; 2008 May 19; 47(10):4088-94. PubMed ID: 18396866 [Abstract] [Full Text] [Related]
32. [Preparation and luminescence properties of nanocrystals Gd2O3: Eu3+]. Peng ZW, Wang LL, Liu HQ, Li HJ, Zou BS, Yang G, Zhang J. Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Mar 19; 27(3):427-31. PubMed ID: 17554890 [Abstract] [Full Text] [Related]
34. [Effects of Zn2+ doping on the structural and luminescent properties of GdTaO4 : Eu3+ phosphors]. Xiao LH, Gu M, Liu XL, Zhang R, Liu BJ, Xu X. Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Jun 19; 27(6):1054-7. PubMed ID: 17763755 [Abstract] [Full Text] [Related]
35. The temperature-controlled growth of In2O3 nanowires, nanotowers and ultra-long layered nanorods. Singh N, Zhang T, Lee PS. Nanotechnology; 2009 May 13; 20(19):195605. PubMed ID: 19420644 [Abstract] [Full Text] [Related]
36. Nitrogen-doped tungsten oxide nanowires: low-temperature synthesis on Si, and electrical, optical, and field-emission properties. Chang MT, Chou LJ, Chueh YL, Lee YC, Hsieh CH, Chen CD, Lan YW, Chen LJ. Small; 2007 Apr 13; 3(4):658-64. PubMed ID: 17315263 [Abstract] [Full Text] [Related]
37. Comparative structure and optical properties of Ga-, In-, and Sn-doped ZnO nanowires synthesized via thermal evaporation. Bae SY, Na CW, Kang JH, Park J. J Phys Chem B; 2005 Feb 24; 109(7):2526-31. PubMed ID: 16851252 [Abstract] [Full Text] [Related]
38. Surfactant-assisted synthesis and characterization of SrCrO4 nanostructures. Di C, Tang K, Zhang S, Zheng H, Qian Y. J Nanosci Nanotechnol; 2006 Mar 24; 6(3):738-42. PubMed ID: 16573130 [Abstract] [Full Text] [Related]
39. Synthesis of long indium nitride nanowires with uniform diameters in large quantities. Luo S, Zhou W, Zhang Z, Liu L, Dou X, Wang J, Zhao X, Liu D, Gao Y, Song L, Xiang Y, Zhou J, Xie S. Small; 2005 Oct 24; 1(10):1004-9. PubMed ID: 17193386 [Abstract] [Full Text] [Related]
40. Nanostructured CaWO4, CaWO4:Eu3+ and CaWO4:Tb3+ particles: sonochemical synthesis and luminescent properties. Li C, Lin C, Liu X, Lin J. J Nanosci Nanotechnol; 2008 Mar 24; 8(3):1183-90. PubMed ID: 18468121 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]