These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


253 related items for PubMed ID: 16375567

  • 1. Efficient Monte Carlo trial moves for polypeptide simulations.
    Betancourt MR.
    J Chem Phys; 2005 Nov 01; 123(17):174905. PubMed ID: 16375567
    [Abstract] [Full Text] [Related]

  • 2. Separation of time scale and coupling in the motion governed by the coarse-grained and fine degrees of freedom in a polypeptide backbone.
    Murarka RK, Liwo A, Scheraga HA.
    J Chem Phys; 2007 Oct 21; 127(15):155103. PubMed ID: 17949219
    [Abstract] [Full Text] [Related]

  • 3. Efficient chain moves for Monte Carlo simulations of a wormlike DNA model: excluded volume, supercoils, site juxtapositions, knots, and comparisons with random-flight and lattice models.
    Liu Z, Chan HS.
    J Chem Phys; 2008 Apr 14; 128(14):145104. PubMed ID: 18412482
    [Abstract] [Full Text] [Related]

  • 4. Avoiding unphysical kinetic traps in Monte Carlo simulations of strongly attractive particles.
    Whitelam S, Geissler PL.
    J Chem Phys; 2007 Oct 21; 127(15):154101. PubMed ID: 17949126
    [Abstract] [Full Text] [Related]

  • 5. Local moves: an efficient algorithm for simulation of protein folding.
    Elofsson A, Le Grand SM, Eisenberg D.
    Proteins; 1995 Sep 21; 23(1):73-82. PubMed ID: 8539252
    [Abstract] [Full Text] [Related]

  • 6. Monte Carlo vs molecular dynamics for all-atom polypeptide folding simulations.
    Ulmschneider JP, Ulmschneider MB, Di Nola A.
    J Phys Chem B; 2006 Aug 24; 110(33):16733-42. PubMed ID: 16913813
    [Abstract] [Full Text] [Related]

  • 7. Optimization of Monte Carlo trial moves for protein simulations.
    Betancourt MR.
    J Chem Phys; 2011 Jan 07; 134(1):014104. PubMed ID: 21218994
    [Abstract] [Full Text] [Related]

  • 8. Overcoming entropic barrier with coupled sampling at dual resolutions.
    Lwin TZ, Luo R.
    J Chem Phys; 2005 Nov 15; 123(19):194904. PubMed ID: 16321110
    [Abstract] [Full Text] [Related]

  • 9. Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins.
    Abagyan R, Totrov M.
    J Mol Biol; 1994 Jan 21; 235(3):983-1002. PubMed ID: 8289329
    [Abstract] [Full Text] [Related]

  • 10. Partial multicanonical algorithm for molecular dynamics and Monte Carlo simulations.
    Okumura H.
    J Chem Phys; 2008 Sep 28; 129(12):124116. PubMed ID: 19045015
    [Abstract] [Full Text] [Related]

  • 11. Dihedral angle principal component analysis of molecular dynamics simulations.
    Altis A, Nguyen PH, Hegger R, Stock G.
    J Chem Phys; 2007 Jun 28; 126(24):244111. PubMed ID: 17614541
    [Abstract] [Full Text] [Related]

  • 12. Using internal and collective variables in Monte Carlo simulations of nucleic acid structures: chain breakage/closure algorithm and associated Jacobians.
    Sklenar H, Wüstner D, Rohs R.
    J Comput Chem; 2006 Feb 28; 27(3):309-15. PubMed ID: 16355439
    [Abstract] [Full Text] [Related]

  • 13. Solvent-shift Monte Carlo: a cluster algorithm for solvated systems.
    Hixson CA, Benigni JP, Earl DJ.
    Phys Chem Chem Phys; 2009 Aug 14; 11(30):6335-8. PubMed ID: 19809663
    [Abstract] [Full Text] [Related]

  • 14. Monte Carlo simulation and molecular theory of tethered polyelectrolytes.
    Hehmeyer OJ, Arya G, Panagiotopoulos AZ, Szleifer I.
    J Chem Phys; 2007 Jun 28; 126(24):244902. PubMed ID: 17614585
    [Abstract] [Full Text] [Related]

  • 15. Estimation of protein folding probability from equilibrium simulations.
    Rao F, Settanni G, Guarnera E, Caflisch A.
    J Chem Phys; 2005 May 08; 122(18):184901. PubMed ID: 15918759
    [Abstract] [Full Text] [Related]

  • 16. Global optimization and folding pathways of selected alpha-helical proteins.
    Carr JM, Wales DJ.
    J Chem Phys; 2005 Dec 15; 123(23):234901. PubMed ID: 16392943
    [Abstract] [Full Text] [Related]

  • 17. Fast protein structure prediction using Monte Carlo simulations with modal moves.
    Carnevali P, Tóth G, Toubassi G, Meshkat SN.
    J Am Chem Soc; 2003 Nov 26; 125(47):14244-5. PubMed ID: 14624550
    [Abstract] [Full Text] [Related]

  • 18. Calculation of the entropy and free energy by the hypothetical scanning Monte Carlo method: application to peptides.
    Cheluvaraja S, Meirovitch H.
    J Chem Phys; 2005 Feb 01; 122(5):54903. PubMed ID: 15740349
    [Abstract] [Full Text] [Related]

  • 19. Knowledge-based potential for the polypeptide backbone.
    Betancourt MR.
    J Phys Chem B; 2008 Apr 24; 112(16):5058-69. PubMed ID: 18373361
    [Abstract] [Full Text] [Related]

  • 20. Folding of small proteins using a single continuous potential.
    Kim SY, Lee J, Lee J.
    J Chem Phys; 2004 May 01; 120(17):8271-6. PubMed ID: 15267747
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.